The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 2131
Back to Result List

Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model

  • Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the errorPaleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in themodel. This result might help the dendrochronology community to optimize their sampling efforts.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Walter Acevedo, Bijan FallahORCiD, Sebastian ReichORCiDGND, Ulrich Cubasch
DOI:https://doi.org/10.5194/cp-13-545-2017
ISSN:1814-9324
ISSN:1814-9332
Title of parent work (English):Climate of the past : an interactive open access journal of the European Geosciences Union
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Volume:13
Number of pages:13
First page:545
Last Page:557
Funding institution:German Federal Ministry of Education and Research (BMBF) as part of the Research for Sustainable Development initiative (FONA) through the PalMod project [FKZ: 01LP1511A]; Helmholtz graduate research school GeoSim
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.