The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 145
Back to Result List

Organic-matter quality of deep permafrost carbon

  • The organic-carbon (OC) pool accumulated in Arctic permafrost (perennially frozen ground) equals the carbon stored in the modern atmosphere. To give an idea of how Yedoma region permafrost could respond under future climatic warming, we conducted a study to quantify the organic-matter quality (here defined as the intrinsic potential to be further transformed, decomposed, and mineralized) of late Pleistocene (Yedoma) and Holocene (thermokarst) deposits on the Buor-Khaya Peninsula, northeast Siberia. The objective of this study was to develop a stratigraphic classified organic-matter quality characterization. For this purpose the degree of organic-matter decomposition was estimated by using a multiproxy approach. We applied sedimentological (grain-size analyses, bulk density, ice content) and geochemical parameters (total OC, stable carbon isotopes (delta C-13),total organic carbon : nitrogen (C / N) ratios) as well as lipid biomarkers (n-alkanes, n-fatty acids, hopanes, triterpenoids, and biomarker indices, i.e., average chain length,The organic-carbon (OC) pool accumulated in Arctic permafrost (perennially frozen ground) equals the carbon stored in the modern atmosphere. To give an idea of how Yedoma region permafrost could respond under future climatic warming, we conducted a study to quantify the organic-matter quality (here defined as the intrinsic potential to be further transformed, decomposed, and mineralized) of late Pleistocene (Yedoma) and Holocene (thermokarst) deposits on the Buor-Khaya Peninsula, northeast Siberia. The objective of this study was to develop a stratigraphic classified organic-matter quality characterization. For this purpose the degree of organic-matter decomposition was estimated by using a multiproxy approach. We applied sedimentological (grain-size analyses, bulk density, ice content) and geochemical parameters (total OC, stable carbon isotopes (delta C-13),total organic carbon : nitrogen (C / N) ratios) as well as lipid biomarkers (n-alkanes, n-fatty acids, hopanes, triterpenoids, and biomarker indices, i.e., average chain length, carbon preference index (CPI), and higher-plant fatty-acid index (HPFA)). Our results show that the Yedoma and thermokarst organic-matter qualities for further decomposition exhibit no obvious degradation-depth trend. Relatively, the C / N and delta C-13 values and the HPFA index show a significantly better preservation of the organic matter stored in thermokarst deposits compared to Yedoma deposits. The CPI data suggest less degradation of the organic matter from both deposits, with a higher value for Yedoma organic matter. As the interquartile ranges of the proxies mostly over-lap, we interpret this as indicating comparable quality for further decomposition for both kinds of deposits with likely better thermokarst organic-matter quality. Supported by principal component analyses, the sediment parameters and quality proxies of Yedoma and thermokarst deposits could not be unambiguously separated from each other. This revealed that the organic-matter vulnerability is heterogeneous and depends on different decomposition trajectories and the previous decomposition and preservation history. Elucidating this was one of the major new contributions of our multiproxy study. With the addition of biomarker data, it was possible to show that permafrost organic-matter degradation likely occurs via a combination of (uncompleted) degradation cycles or a cascade of degradation steps rather than as a linear function of age or sediment facies. We conclude that the amount of organic matter in the studied sediments is high for mineral soils and of good quality and therefore susceptible to future decomposition. The lack of depth trends shows that permafrost acts like a giant freezer, preserving the constant quality of ancient organic matter. When undecomposed Yedoma organic matter is mobilized via thermokarst processes, the fate of this carbon depends largely on the environmental conditions; the carbon could be preserved in an undecomposed state till refreezing occurs. If modern input has occurred, thermokarst organic matter could be of a better quality for future microbial decomposition than that found in Yedoma deposits.show moreshow less

Download full text files

  • pmnr514.pdfeng
    (4142KB)

    SHA-1: a3bdefc6ab1a948f32f478f0bc64c4a1e853a80a

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jens StraussORCiDGND, Lutz SchirrmeisterORCiDGND, Kai MangelsdorfORCiDGND, L. Eichhorn, Sebastian WetterichORCiD, Ulrike HerzschuhORCiDGND
URN:urn:nbn:de:kobv:517-opus4-409534
DOI:https://doi.org/10.25932/publishup-40953
ISSN:1866-8372
Title of parent work (English):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Subtitle (English):a study from Arctic Siberia
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (514)
Publication type:Postprint
Language:English
Date of first publication:2019/01/17
Publication year:2015
Publishing institution:Universität Potsdam
Release date:2019/01/17
Tag:Alaska; Holocene peat sequence; Laptev Sea; climate-change; gas-production; radiocarbon; soils; thaw; thermokarst lakes; tundra
Issue:514
Number of pages:19
Source:Biogeosciences 12 (2015), pp. 2227-2245 DOI: 10.5194/bg-12-2227-2015
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Publishing method:Open Access
Grantor:Copernicus
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.