Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 3 von 10
Zurück zur Trefferliste

Impact of Magnitude Selection on Aleatory Variability Associated with Ground-Motion Prediction Equations

  • We derive a set of regional ground-motion prediction equations (GMPEs) in the Fourier amplitude spectra (FAS-GMPE) and in the spectral acceleration (SA-GMPE) domains for the purpose of interpreting the between-event residuals in terms of source parameter variability. We analyze a dataset of about 65,000 recordings generated by 1400 earthquakes (moment magnitude 2: 5 <= M-w <= 6: 5, hypocentral distance R-hypo <= 150 km) that occurred in central Italy between January 2008 and October 2017. In a companion article (Bindi, Spallarossa, et al., 2018), the nonparametric acceleration source spectra were interpreted in terms of omega-square models modified to account for deviations from a high-frequency flat plateau through a parameter named k(source). Here, the GMPEs are derived considering the moment (M-w), the local (M-L), and the energy (M-e) magnitude scales, and the between-event residuals are computed as random effects. We show that the between-event residuals for the FAS-GMPE implementing M-w are correlated with stress drop, withWe derive a set of regional ground-motion prediction equations (GMPEs) in the Fourier amplitude spectra (FAS-GMPE) and in the spectral acceleration (SA-GMPE) domains for the purpose of interpreting the between-event residuals in terms of source parameter variability. We analyze a dataset of about 65,000 recordings generated by 1400 earthquakes (moment magnitude 2: 5 <= M-w <= 6: 5, hypocentral distance R-hypo <= 150 km) that occurred in central Italy between January 2008 and October 2017. In a companion article (Bindi, Spallarossa, et al., 2018), the nonparametric acceleration source spectra were interpreted in terms of omega-square models modified to account for deviations from a high-frequency flat plateau through a parameter named k(source). Here, the GMPEs are derived considering the moment (M-w), the local (M-L), and the energy (M-e) magnitude scales, and the between-event residuals are computed as random effects. We show that the between-event residuals for the FAS-GMPE implementing M-w are correlated with stress drop, with correlation coefficients increasing with increasing frequency up to about 10 Hz. Contrariwise, the correlation is weak for the FAS-GMPEs implementing M-L and M-e, in particular between 2 and 5 Hz, where most of the corner frequencies lie. At higher frequencies, all models show a strong correlation with k(source). The correlation with the source parameters reflects in a different behavior of the standard deviation tau of the between-event residuals with frequency. Although tau is smaller for the FAS-GMPE using M-w below 1.5 Hz, at higher frequencies, the model implementing either M-L or M-e shows smaller values, with a reduction of about 30% at 3 Hz (i.e., from 0.3 for M-w to 0.1 for M-L). We conclude that considering magnitude scales informative for the stress-drop variability allows to reduce the between-event variability with a significant impact on the hazard assessment, in particular for studies in which the ergodic assumption on site is removed.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Dino BindiORCiD, Matteo Picozzi, Daniele Spallarossa, Fabrice CottonORCiDGND, Sreeram Reddy KothaORCiDGND
DOI:https://doi.org/10.1785/0120180239
ISSN:0037-1106
ISSN:1943-3573
Titel des übergeordneten Werks (Englisch):Bulletin of the Seismological Society of America
Untertitel (Englisch):Part II-Analysis of the Between-Event Distribution in Central Italy
Verlag:Seismological Society of America
Verlagsort:Albany
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:15.01.2019
Erscheinungsjahr:2019
Datum der Freischaltung:12.04.2021
Band:109
Ausgabe:1
Seitenanzahl:12
Erste Seite:251
Letzte Seite:262
Fördernde Institution:European Commission H2020 project SERA (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe)
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.