• search hit 5 of 10
Back to Result List

Disentangling limnological processes in the time-frequency domain

  • State variables in lake ecosystems are subject to processes that act on different time scales. The relative importance of each of these processes changes over time, e.g., due to varying constraints of physical, biological, and biogeochemical processes. Correspondingly, continuous automatic measurements at high temporal resolution often reveal intriguing patterns that can rarely be directly ascribed to single processes. In light of the rather complex interplay of such processes, disentangling them requires more powerful methods than researchers have applied up to this point. For this reason, we tested the potential of wavelet coherence, based on the assumption that different processes result in correlations between different variables, on different time scales and during different time windows across the seasons. The approach was tested on a set of multivariate hourly data measured between the onset of an ice cover and a cyanobacterial summer bloom in the year 2009 in the Muggelsee, a polymictic eutrophic lake. We found that processesState variables in lake ecosystems are subject to processes that act on different time scales. The relative importance of each of these processes changes over time, e.g., due to varying constraints of physical, biological, and biogeochemical processes. Correspondingly, continuous automatic measurements at high temporal resolution often reveal intriguing patterns that can rarely be directly ascribed to single processes. In light of the rather complex interplay of such processes, disentangling them requires more powerful methods than researchers have applied up to this point. For this reason, we tested the potential of wavelet coherence, based on the assumption that different processes result in correlations between different variables, on different time scales and during different time windows across the seasons. The approach was tested on a set of multivariate hourly data measured between the onset of an ice cover and a cyanobacterial summer bloom in the year 2009 in the Muggelsee, a polymictic eutrophic lake. We found that processes such as photosynthesis and respiration, the growth and decay of phytoplankton biomass, dynamics in the CO2-carbonate system, wind-induced resuspension of particles, and vertical mixing all occasionally served as dominant drivers of the variability in our data. We therefore conclude that high-resolution data and a method capable of analyzing time series in both the time and the frequency domain can help to enhance our understanding of the time scales and processes responsible for the high variability in driver variables and response variables, which in turn can lay the ground for mechanistic analyses.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Silke Regina SchmidtORCiDGND, Gunnar LischeidORCiDGND, Thomas Hintze, Rita AdrianORCiDGND
DOI:https://doi.org/10.1002/lno.11049
ISSN:0024-3590
ISSN:1939-5590
Title of parent work (English):Limnology and oceanography
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Date of first publication:2018/11/14
Publication year:2018
Release date:2021/03/24
Volume:64
Issue:2
Number of pages:18
First page:423
Last Page:440
Funding institution:University of Potsdam; Office of Equal Opportunity and Diversity of the University of Potsdam; French Foundation for Research on Biodiversity (FRB) through its synthesis center, CESAB; John Wesley Powell Center for Analysis and Synthesis; MANTEL project (H2020-MSCAITN-2016)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.