• search hit 1 of 7
Back to Result List

Late Pleistocene to Holocene vegetation and climate changes in northwestern Chukotka (Far East Russia) deduced from lakes Ilirney and Rauchuagytgyn pollen records

  • This paper presents two new pollen records and quantitative climate reconstructions from northern Chukotka documenting environmental changes over the last 27.9 ka. Open tundra- and steppe-like habitats dominated between 27.9 and 18.7 cal. ka BP. Betula and Alnus shrubs might have grown in sheltered microhabitats but disappeared after 18.7 cal. ka BP. Although the climate was rather harsh, local herb-dominated communities supported herbivores as is evident by the presence of coprophilous spores in the sediments. The increase in Salix and Cyperaceae similar to 16.1 cal. ka BP suggests climate amelioration. Shrub Betula appeared similar to 15.9 cal. ka BP, and became dominant after similar to 15.52 cal. ka BP, whilst typical steppe communities drastically reduced. Very high presence of Botryococcus in the Lateglacial sediments reflects widespread shallow habitats, probably due to lake level increase. Shrub Alnus became common after similar to 13 cal. ka BP reflecting further climate amelioration. Simultaneously, herb communitiesThis paper presents two new pollen records and quantitative climate reconstructions from northern Chukotka documenting environmental changes over the last 27.9 ka. Open tundra- and steppe-like habitats dominated between 27.9 and 18.7 cal. ka BP. Betula and Alnus shrubs might have grown in sheltered microhabitats but disappeared after 18.7 cal. ka BP. Although the climate was rather harsh, local herb-dominated communities supported herbivores as is evident by the presence of coprophilous spores in the sediments. The increase in Salix and Cyperaceae similar to 16.1 cal. ka BP suggests climate amelioration. Shrub Betula appeared similar to 15.9 cal. ka BP, and became dominant after similar to 15.52 cal. ka BP, whilst typical steppe communities drastically reduced. Very high presence of Botryococcus in the Lateglacial sediments reflects widespread shallow habitats, probably due to lake level increase. Shrub Alnus became common after similar to 13 cal. ka BP reflecting further climate amelioration. Simultaneously, herb communities gradually decreased in the vegetation reaching a minimum similar to 11.8 cal. ka BP. A gradual decrease of algae remains suggests a reduction of shallow-water habitats. Shrubby and graminoid tundra was dominant similar to 11.8-11.1 cal. ka BP, later Salix stands significantly decreased. The forest-tundra ecotone established in the Early Holocene, shortly after 11.1 cal. ka BP. Low contents of green algae in the Early Holocene sediments likely reflect deeper aquatic conditions. The most favourable climate conditions were between similar to 10.6 and 7 cal. ka BP. Vegetation became similar to the modern after similar to 7 cal. ka BP but Pinus pumila came to the Ilirney area at about 1.2 cal. ka BP. It is important to emphasize that the study area provided refugia for Betula and Alnus during MIS 2. It is also notable that our records do not reflect evidence of Younger Dryas cooling, which is inconsistent with some regional environmental records but in good accordance with some others.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andrei AndreevORCiD, Elena RaschkeORCiD, Boris BiskabornORCiDGND, Stuart Andrew Vyse, Jérémy CourtinORCiD, Thomas BöhmerORCiD, Kathleen R. Stoof-LeichsenringORCiDGND, Stefan KruseORCiDGND, Luidmila Agafyevna PestryakovaORCiD, Ulrike HerzschuhORCiDGND
DOI:https://doi.org/10.1111/bor.12521
ISSN:0300-9483
ISSN:1502-3885
Title of parent work (English):Boreas : an international journal of quaternary research
Publisher:Wiley-Blackwell
Place of publishing:Oxford [u.a.]
Publication type:Article
Language:English
Date of first publication:2021/03/31
Publication year:2021
Release date:2024/06/13
Volume:50
Issue:3
Number of pages:19
First page:652
Last Page:670
Funding institution:Russian Foundation for Basic Research (RFBR)Russian Foundation for Basic Research (RFBR) [18-45-140053]; Russian Ministry of Education and ScienceMinistry of Education and Science, Russian Federation [FRRG-2020-0019]; Project of the North-Eastern Federal University [SMK-P-1/2-242-17, 494-OD]; European Research Council (ERC)European Research Council (ERC)European Commission [772852]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.