• search hit 15 of 65
Back to Result List

Quantum dynamics, isotope effects, and power spectra of H-2(+) and HD+ excited to the continuum by strong one-cycle laser pulses: Three-dimensional non-Born-Oppenheimer simulations

  • Non-Born-Oppenheimer quantum dynamics of H-2(+) and HD+ excited by single one-cycle laser pulses linearly polarized along the molecular (z) axis have been studied within a three-dimensional model, including the internuclear distance R and electron coordinates z and rho, by means of the numerical solution of the time-dependent Schrodinger equation on the timescale of about 200 fs. Laser carrier frequencies corresponding to the wavelengths of lambda(l) = 400 and 50 nm have been used and the amplitudes of the pulses have been chosen such that the energies of H-2(+) and HD+ are above the dissociation threshold after the ends of the laser pulses. It is shown that excitation of H-2(+) and HD+ above the dissociation threshold is accompanied by formation of vibrationally "hot" and "cold" ensembles of molecules. Dissociation of vibrationally "hot" molecules does not prevent the appearance of post-laser-pulse electronic oscillations, parallel z oscillations, and transversal rho oscillations. Moreover, dissociation of "hot" molecules does notNon-Born-Oppenheimer quantum dynamics of H-2(+) and HD+ excited by single one-cycle laser pulses linearly polarized along the molecular (z) axis have been studied within a three-dimensional model, including the internuclear distance R and electron coordinates z and rho, by means of the numerical solution of the time-dependent Schrodinger equation on the timescale of about 200 fs. Laser carrier frequencies corresponding to the wavelengths of lambda(l) = 400 and 50 nm have been used and the amplitudes of the pulses have been chosen such that the energies of H-2(+) and HD+ are above the dissociation threshold after the ends of the laser pulses. It is shown that excitation of H-2(+) and HD+ above the dissociation threshold is accompanied by formation of vibrationally "hot" and "cold" ensembles of molecules. Dissociation of vibrationally "hot" molecules does not prevent the appearance of post-laser-pulse electronic oscillations, parallel z oscillations, and transversal rho oscillations. Moreover, dissociation of "hot" molecules does not influence characteristic frequencies of electronic z and rho oscillations. The main difference between the laser-induced quantum dynamics of homonuclear H-2(+) and its heteronuclear isotope HD+ is that fast post-laser-pulse electronic z oscillations in H-2(+) are regularly shaped with the period of tau(shp) approximate to 30 fs corresponding to nuclear oscillations in H-2(+), while electronic z oscillations in HD+ arise as "echo pulses" of its initial excitation and appear with the period of tau(echo) approximate to 80 fs corresponding to nuclear motion in HD+. Accordingly, corresponding power spectra of nuclear motion contain strong low-frequency harmonics at omega(shp) = 2 pi/tau(shp) in H2(+) and omega(echo) = 2 pi/tau(echo) in HD+. Power spectra related to both electronic and nuclear motion have been calculated in the acceleration form. Both higher- and lower-order harmonics are generated at the laser wavelength lambda(l) = 400 nm, while only lower-order harmonics are well pronounced at lambda(l) = 50 nm. It is also shown that a rationalized harmonic order, defined in terms of the frequency of the laser-induced electronic z oscillations, agrees with the concept of inversion symmetry for electronic motion in diatomic molecules.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Guennaddi K. ParamonovORCiD, Tillmann KlamrothORCiDGND, H. Z. Lu, Andre D. Bandrauk
DOI:https://doi.org/10.1103/PhysRevA.98.063431
ISSN:2469-9926
ISSN:2469-9934
Title of parent work (English):Physical review : A, Atomic, molecular, and optical physics
Publisher:American Physical Society
Place of publishing:College Park
Publication type:Article
Language:English
Date of first publication:2018/12/27
Publication year:2018
Release date:2020/04/07
Volume:98
Issue:6
Number of pages:16
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.