• search hit 3 of 6
Back to Result List

Chronostratigraphy of the Baringo-Tugen-Barsemoi (HSPDP-BTB13-1A) core-Ar-40/Ar-39 dating, magnetostratigraphy, tephrostratigraphy, sequence stratigraphy and Bayesian age modeling

  • The Baringo-Tugen-Barsemoi 2013 drillcore (BTB13), acquired as part of the Hominin Sites and Paleolakes Drilling Project, recovered 228 m of fluviolacustrine sedimentary rocks and tuffs spanning a similar to 3.29-2.56 Ma interval of the highly fossiliferous and hominin-bearing Chemeron Formation, Tugen Hills, Kenya. Here we present a Bayesian stratigraphic age model for the core employing chronostratigraphic control points derived from Ar-40/Ar-39 dating of tuffs from core and outcrop, Ar-40/Ar-39 age calibration of related outcrop diatomaceous units, and core magnetostratigraphy. The age model reveals three main intervals with distinct sediment accumulation rates: an early rapid phase from 3.2 to 2.9 Ma; a relatively slow phase from 2.9 to 2.7 Ma; and the highest rate of accumulation from 2.7 to 2.6 Ma. The intervals of rapid accumulation correspond to periods of high Earth orbital eccentricity, whereas the slow accumulation interval corresponds to low eccentricity at 2.9-2.7 Ma, suggesting that astronomically mediated climateThe Baringo-Tugen-Barsemoi 2013 drillcore (BTB13), acquired as part of the Hominin Sites and Paleolakes Drilling Project, recovered 228 m of fluviolacustrine sedimentary rocks and tuffs spanning a similar to 3.29-2.56 Ma interval of the highly fossiliferous and hominin-bearing Chemeron Formation, Tugen Hills, Kenya. Here we present a Bayesian stratigraphic age model for the core employing chronostratigraphic control points derived from Ar-40/Ar-39 dating of tuffs from core and outcrop, Ar-40/Ar-39 age calibration of related outcrop diatomaceous units, and core magnetostratigraphy. The age model reveals three main intervals with distinct sediment accumulation rates: an early rapid phase from 3.2 to 2.9 Ma; a relatively slow phase from 2.9 to 2.7 Ma; and the highest rate of accumulation from 2.7 to 2.6 Ma. The intervals of rapid accumulation correspond to periods of high Earth orbital eccentricity, whereas the slow accumulation interval corresponds to low eccentricity at 2.9-2.7 Ma, suggesting that astronomically mediated climate processes may be responsible for the observed changes in sediment accumulation rate. Lacustrine transgression-regression events, as delineated using sequence stratigraphy, dominantly operate on precession scale, particularly within the high eccentricity periods. A set of erosively based fluvial conglomerates correspond to the 2.9-2.7 Ma interval, which could be related to either the depositional response to low eccentricity or to the development of unconformities due to local tectonic activity. Age calibration of core magnetic susceptibility and gamma density logs indicates a close temporal correspondence between a shift from high- to low-frequency signal variability at similar to 3 Ma, approximately coincident the end of the mid-Piacenzian Warm Period, and the beginning of the cooling of world climate leading to the initiation of Northern Hemispheric glaciation c. 2.7 Ma. BTB13 and the Baringo Basin records may thus provide evidence of a connection between high-latitude glaciation and equatorial terrestrial climate toward the end of the Pliocene.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Alan L. DeinoORCiD, Mark Jan SierORCiD, Dominique Garello, B. Keller, John KingstonORCiD, Jennifer J. Scott, Guillaume Dupont-NivetORCiD, Andrew Cohen
DOI:https://doi.org/10.1016/j.palaeo.2019.109258
ISSN:0031-0182
ISSN:1872-616X
Title of parent work (English):Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/10/27
Tag:Chemeron Formation; Eccentricity; Paleoclimate; Paleolimnology; Pliocene; Precession
Volume:532
Number of pages:16
Funding institution:International Continental Drilling Program (ICDP); National Science FoundationNational Science Foundation (NSF) [EAR 1123942, BCS 1241790, EAR 1338553, EAR 1322017]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Open Access / Bronze Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.