• search hit 9 of 409
Back to Result List

Geodynamic modeling of process interactions at continental plate boundaries

  • Plate tectonic boundaries constitute the suture zones between tectonic plates. They are shaped by a variety of distinct and interrelated processes and play a key role in geohazards and georesource formation. Many of these processes have been previously studied, while many others remain unaddressed or undiscovered. In this work, the geodynamic numerical modeling software ASPECT is applied to shed light on further process interactions at continental plate boundaries. In contrast to natural data, geodynamic modeling has the advantage that processes can be directly quantified and that all parameters can be analyzed over the entire evolution of a structure. Furthermore, processes and interactions can be singled out from complex settings because the modeler has full control over all of the parameters involved. To account for the simplifying character of models in general, I have chosen to study generic geological settings with a focus on the processes and interactions rather than precisely reconstructing a specific region of thePlate tectonic boundaries constitute the suture zones between tectonic plates. They are shaped by a variety of distinct and interrelated processes and play a key role in geohazards and georesource formation. Many of these processes have been previously studied, while many others remain unaddressed or undiscovered. In this work, the geodynamic numerical modeling software ASPECT is applied to shed light on further process interactions at continental plate boundaries. In contrast to natural data, geodynamic modeling has the advantage that processes can be directly quantified and that all parameters can be analyzed over the entire evolution of a structure. Furthermore, processes and interactions can be singled out from complex settings because the modeler has full control over all of the parameters involved. To account for the simplifying character of models in general, I have chosen to study generic geological settings with a focus on the processes and interactions rather than precisely reconstructing a specific region of the Earth. In Chapter 2, 2D models of continental rifts with different crustal thicknesses between 20 and 50 km and extension velocities in the range of 0.5-10 mm/yr are used to obtain a speed limit for the thermal steady-state assumption, commonly employed to address the temperature fields of continental rifts worldwide. Because the tectonic deformation from ongoing rifting outpaces heat conduction, the temperature field is not in equilibrium, but is characterized by a transient, tectonically-induced heat flow signal. As a result, I find that isotherm depths of the geodynamic evolution models are shallower than a temperature distribution in equilibrium would suggest. This is particularly important for deep isotherms and narrow rifts. In narrow rifts, the magnitude of the transient temperature signal limits a well-founded applicability of the thermal steady-state assumption to extension velocities of 0.5-2 mm/yr. Estimation of the crustal temperature field affects conclusions on all temperature-dependent processes ranging from mineral assemblages to the feasible exploitation of a geothermal reservoir. In Chapter 3, I model the interactions of different rheologies with the kinematics of folding and faulting using the example of fault-propagation folds in the Andean fold-and-thrust belt. The evolution of the velocity fields from geodynamic models are compared with those from trishear models of the same structure. While the latter use only geometric and kinematic constraints of the main fault, the geodynamic models capture viscous, plastic, and elastic deformation in the entire model domain. I find that both models work equally well for early, and thus relatively simple stages of folding and faulting, while results differ for more complex situations where off-fault deformation and secondary faulting are present. As fault-propagation folds can play an important role in the formation of reservoirs, knowledge of fluid pathways, for example via fractures and faults, is crucial for their characterization. Chapter 4 deals with a bending transform fault and the interconnections between tectonics and surface processes. In particular, the tectonic evolution of the Dead Sea Fault is addressed where a releasing bend forms the Dead Sea pull-apart basin, while a restraining bend further to the North resulted in the formation of the Lebanese mountains. I ran 3D coupled geodynamic and surface evolution models that included both types of bends in a single setup. I tested various randomized initial strain distributions, showing that basin asymmetry is a consequence of strain localization. Furthermore, by varying the surface process efficiency, I find that the deposition of sediment in the pull-apart basin not only controls basin depth, but also results in a crustal flow component that increases uplift at the restraining bend. Finally, in Chapter 5, I present the computational basis for adding further complexity to plate boundary models in ASPECT with the implementation of earthquake-like behavior using the rate-and-state friction framework. Despite earthquakes happening on a relatively small time scale, there are many interactions between the seismic cycle and the long time spans of other geodynamic processes. Amongst others, the crustal state of stress as well as the presence of fluids or changes in temperature may alter the frictional behavior of a fault segment. My work provides the basis for a realistic setup of involved structures and processes, which is therefore important to obtain a meaningful estimate for earthquake hazards. While these findings improve our understanding of continental plate boundaries, further development of geodynamic software may help to reveal even more processes and interactions in the future.show moreshow less
  • Plattentektonische Grenzen bilden die Nahtstellen zwischen tektonischen Platten. Sie werden durch eine Vielzahl von unterschiedlichen und miteinander verknüpften Prozessen geformt und spielen eine Schlüsselrolle im Bereich der Georisiken und der Entstehung von Georessourcen. Viele dieser Prozesse sind bereits erforscht, während viele andere noch unbearbeitet oder unentdeckt sind. In dieser Arbeit wird die geodynamische numerische Modellierungssoftware ASPECT verwendet, um weitere Prozessinteraktionen an kontinentalen Plattengrenzen zu untersuchen. Im Gegensatz zu natürlichen Daten hat die geodynamische Modellierung den Vorteil, dass Prozesse direkt quantifiziert und alle Parameter über die gesamte Entwicklung einer Struktur analysiert werden können. Außerdem können Prozesse und Wechselwirkungen aus komplexen Zusammenhängen herausgefiltert werden, da der Modellierer volle Kontrolle über alle beteiligten Parameter hat. Um dem vereinfachenden Charakter von Modellen im Allgemeinen Rechnung zu tragen, habe ich mich für die UntersuchungPlattentektonische Grenzen bilden die Nahtstellen zwischen tektonischen Platten. Sie werden durch eine Vielzahl von unterschiedlichen und miteinander verknüpften Prozessen geformt und spielen eine Schlüsselrolle im Bereich der Georisiken und der Entstehung von Georessourcen. Viele dieser Prozesse sind bereits erforscht, während viele andere noch unbearbeitet oder unentdeckt sind. In dieser Arbeit wird die geodynamische numerische Modellierungssoftware ASPECT verwendet, um weitere Prozessinteraktionen an kontinentalen Plattengrenzen zu untersuchen. Im Gegensatz zu natürlichen Daten hat die geodynamische Modellierung den Vorteil, dass Prozesse direkt quantifiziert und alle Parameter über die gesamte Entwicklung einer Struktur analysiert werden können. Außerdem können Prozesse und Wechselwirkungen aus komplexen Zusammenhängen herausgefiltert werden, da der Modellierer volle Kontrolle über alle beteiligten Parameter hat. Um dem vereinfachenden Charakter von Modellen im Allgemeinen Rechnung zu tragen, habe ich mich für die Untersuchung allgemeiner geologischer Gegeben-heiten entschieden, wobei der Schwerpunkt auf den Prozessen und Wechselwirkungen liegt, anstatt eine bestimmte Region der Erde genau zu rekonstruieren. In Kapitel 2 werden 2D-Modelle von kontinentalen Rifts mit unterschiedlichen Krustendicken zwischen 20 und 50 km, sowie Extensionsgeschwindigkeiten im Bereich von 0,5-10 mm/Jahr verwendet, um eine Geschwindigkeitsgrenze für die Annahme eines thermischen Gleichgewichtszustandes zu erhalten, welcher üblicherweise verwendet wird, um die Temperaturfelder kontinentaler Rifts weltweit zu beschreiben. Da die Geschwindigkeit der tektonischen Deformation die der Wärmeleitung übersteigt, befindet sich das Temperaturfeld nicht im Gleichgewicht, sondern ist durch ein transientes, tektonisch induziertes Wärmestromsignal gekennzeichnet. Daraus ergibt sich, dass die Tiefen der Isothermen in den geodynamischen Entwicklungsmodellen flacher liegen, als es eine Temperaturverteilung im Gleichgewichtszustand vermuten ließe. Dies macht sich besondersbei tiefen Isothermen und narrow Rifts bemerkbar. In narrow Rifts begrenzt die Magnitude des transienten Temperatursignals eine fundierte Anwendbarkeit der thermischen Gleichgewichtsannahme auf Extensionsgeschwindigkeiten im Bereich von 0,5-2 mm/Jahr. Die Abschätzung des Temperaturfeldes der Erdkruste wirkt sich auf alle temperaturabhängigen Prozesse aus, von der Mineralzusammensetzung bis hin zur möglichen Nutzung eines geothermischen Reservoirs. In Kapitel 3 modelliere ich die Wechselwirkungen verschiedener Rheologien mit der Kinematik von Auffaltungen und Verwerfungen am Beispiel von fault-propagation folds im andinen Falten- und Überschiebungsgürtel. Die Entwicklung der Geschwindigkeitsfelder aus geodynamischen Modellen wird mit denen aus Trishear-Modellen für dieselbe Struktur verglichen. Während letztere nur geometrische und kinematische Charakteristika der Hauptverwerfung verwenden, erfassen die geodynamischen Modelle sowohl viskose, wie auch plastische und elastische Verformung im gesamten Modellbereich. Meine Forschung zeigt, dass beide Modelle für frühe und damit vergleichbar einfache Phasen der Auffaltung und Verwerfung gleichermaßen gut anwendbar sind, während die Ergebnisse für komplexere Situationen, in denen Verfor-mungen außerhalb der Hauptstörung sowie sekundäre Verwerfungen auftreten, auseinander gehen. Da fault-propagation folds eine wichtige Rolle bei der Bildung von Lagerstätten spielen können, ist Kenntnis zu Migrationswegen von Fluiden, zum Beispiel über Klüfte und Verwerfungen, für ihre Charakterisierung von entscheidender Bedeutung. Kapitel 4 befasst sich mit Biegungen von Transformstörungen sowie den Zusammenhängen zwischen Tektonik und Oberflächenprozessen. Insbesondere wird die tektonische Entwicklung der Verwerfung am Toten Meer behandelt, wo eine von Extension geprägte Biegung der Verwerfung das Pull-Apart-Becken des Toten Meeres bildet, während eine weiter nördlich gelegene von Kompression geprägte Biegung zur Bildung eines Gebirgszuges im Libanon führte. Für dieses Kapitel habe ich gekoppelte 3D Modelle der Geodynamik und Oberflächenentwicklung genutzt sowie beide Arten von Biegungen in einem Modell erforscht. Das Testen von verschiedenen, zufälligen Initialspannungsverteilungen zeigte, dass die Asymmetrie des Beckens eine Folge der Spannungslokalisierung ist. Außerdem habe ich durch Variation der Oberflächenprozesseffizienz herausgearbeitet, dass die Sedimentierung im Pull-Apart-Becken nicht nur die Beckentiefe steuert, sondern auch zu einer Strömungskomponente von Erdkrustenmaterial führt, die die Ablift an der von Kompression geprägten Biegung der Transformstörung erhöht. Anschließend stelle ich in Kapitel 5 die Implementierung von erdbebenähnlichem Verhalten unter Verwendung der Rate-and-State Gleichungen vor, welche die Grundlage für die Erweiterung der Komplexität von Plattengrenzenmodellen in ASPECT bildet. Obwohl Erdbeben auf einer relativ kurzen Zeitskala stattfinden, gibt es viele Wechselwirkungen zwischen dem seismischen Zyklus und den langen Zeitspannen anderer geodynamischer Prozesse. Unter anderem können der Spannungszustand der Kruste sowie das Vorhandensein von Fluiden oder Änderungen der Temperatur das Reibungsverhalten eines Störungssegmentes verändern. Meine Arbeit liefert die Grundlage für einen realistischen Aufbau der beteiligten Strukturen und Prozesse, der wichtig ist, um eine aussagekräftige Abschätzung der Erdbebengefährdung zu erhalten. Während diese Ergebnisse unser Verständnis der kontinentalen Plattengrenzen verbessern, kann die Weiterentwicklung geodynamischer Software dazu beitragen, in Zukunft weitere Prozesse und Wechselwirkungen aufzudecken.show moreshow less

Download full text files

  • SHA-512:d4cfa4e09fa701387ec8c9690f312db326bafda52e97262b8184f3e93b43d42a714d7da4946bf5be7125f3361a1307858b91a0cef99e97ae13cac2d00699ea7d

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Esther Lina HeckenbachORCiDGND
URN:urn:nbn:de:kobv:517-opus4-647500
DOI:https://doi.org/10.25932/publishup-64750
translated title (German):Geodynamische Modellierung von Prozessinteraktionen an kontinentalen Plattengrenzen
Reviewer(s):Sascha BruneORCiDGND, John NaliboffORCiD, João Duarte
Supervisor(s):Sascha Brune, Matthias Rainer Rosenau
Publication type:Doctoral Thesis
Language:English
Date of first publication:2024/08/14
Publication year:2024
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2024/07/03
Release date:2024/08/14
Tag:Oberflächenmodellierung; Plattengrenzen; Wärmediffusion; geodynamische Modellierung; kontinentale Kruste
continental crust; geodynamic modeling; heat flow; landscape evolution; plate boundaries
Number of pages:127
RVK - Regensburg classification:UT 2250
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Extern / Deutsches GeoForschungsZentrum GFZ
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.