• search hit 7 of 57724
Back to Result List

Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies

  • Wildfires play an essential role in the ecology of boreal forests. In eastern Siberia, fire activity has been increasing in recent years, challenging the livelihoods of local communities. Intensifying fire regimes also increase disturbance pressure on the boreal forests, which currently protect the permafrost beneath from accelerated degradation. However, long-term relationships between changes in fire regime and forest structure remain largely unknown. We assess past fire-vegetation feedbacks using sedimentary proxy records from Lake Satagay, Central Yakutia, Siberia, covering the past c. 10,800 years. Results from macroscopic and microscopic charcoal analyses indicate high amounts of burnt biomass during the Early Holocene, and that the present-day, low-severity surface fire regime has been in place since c. 4,500 years before present. A pollen-based quantitative reconstruction of vegetation cover and a terrestrial plant record based on sedimentary ancient DNA metabarcoding suggest a pronounced shift in forestWildfires play an essential role in the ecology of boreal forests. In eastern Siberia, fire activity has been increasing in recent years, challenging the livelihoods of local communities. Intensifying fire regimes also increase disturbance pressure on the boreal forests, which currently protect the permafrost beneath from accelerated degradation. However, long-term relationships between changes in fire regime and forest structure remain largely unknown. We assess past fire-vegetation feedbacks using sedimentary proxy records from Lake Satagay, Central Yakutia, Siberia, covering the past c. 10,800 years. Results from macroscopic and microscopic charcoal analyses indicate high amounts of burnt biomass during the Early Holocene, and that the present-day, low-severity surface fire regime has been in place since c. 4,500 years before present. A pollen-based quantitative reconstruction of vegetation cover and a terrestrial plant record based on sedimentary ancient DNA metabarcoding suggest a pronounced shift in forest structure toward the Late Holocene. Whereas the Early Holocene was characterized by postglacial open larch-birch woodlands, forest structure changed toward the modern, mixed larch-dominated closed-canopy forest during the Mid-Holocene. We propose a potential relationship between open woodlands and high amounts of burnt biomass, as well as a mediating effect of dense larch forest on the climate-driven intensification of fire regimes. Considering the anticipated increase in forest disturbances (droughts, insect invasions, and wildfires), higher tree mortality may force the modern state of the forest to shift toward an open woodland state comparable to the Early Holocene. Such a shift in forest structure may result in a positive feedback on currently intensifying wildfires. These new long-term data improve our understanding of millennial-scale fire regime changes and their relationships to changes of vegetation in Central Yakutia, where the local population is already being confronted with intensifying wildfire seasons.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ramesh GlücklerORCiD, Rongwei Geng, Lennart Grimm, Izabella BaishevaORCiD, Ulrike HerzschuhORCiDGND, Kathleen R. Stoof-LeichsenringORCiDGND, Stefan Kruse, Andrej Aleksandrovic Andreev, Luidmila Pestryakova, Elisabeth DietzeORCiD
DOI:https://doi.org/10.3389/fevo.2022.962906
ISSN:2296-701X
Title of parent work (English):Frontiers in Ecology and Evolution
Publisher:Frontiers Media
Place of publishing:Lausanne
Publication type:Article
Language:English
Date of first publication:2022/08/16
Publication year:2022
Release date:2024/06/17
Tag:Russia; ancient DNA; boreal; charcoal; fire; forest; larch; pollen
Volume:10
Article number:962906
Number of pages:19
Funding institution:European Research Council; Deutsche Forschungsgemeinschaft (DFG, German; Research Foundation [772852]; Russian Ministry of Education and Science; [DI 2544/1-1: 419058007, 448651799]; AWI INSPIRES (International Science; Program for Integrative Research) [2020-0019]; German Academic Exchange; Service e.V. (DAAD)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.