• Treffer 1 von 3
Zurück zur Trefferliste

Transport and loss of ring current electrons inside geosynchronous orbit during the 17 March 2013 storm

  • Ring current electrons (1–100 keV) have received significant attention in recent decades, but many questions regarding their major transport and loss mechanisms remain open. In this study, we use the four‐dimensional Versatile Electron Radiation Belt code to model the enhancement of phase space density that occurred during the 17 March 2013 storm. Our model includes global convection, radial diffusion, and scattering into the Earth's atmosphere driven by whistler‐mode hiss and chorus waves. We study the sensitivity of the model to the boundary conditions, global electric field, the electric field associated with subauroral polarization streams, electron loss rates, and radial diffusion coefficients. The results of the code are almost insensitive to the model parameters above 4.5 RERE, which indicates that the general dynamics of the electrons between 4.5 RE and the geostationary orbit can be explained by global convection. We found that the major discrepancies between the model and data can stem from the inaccurate electric fieldRing current electrons (1–100 keV) have received significant attention in recent decades, but many questions regarding their major transport and loss mechanisms remain open. In this study, we use the four‐dimensional Versatile Electron Radiation Belt code to model the enhancement of phase space density that occurred during the 17 March 2013 storm. Our model includes global convection, radial diffusion, and scattering into the Earth's atmosphere driven by whistler‐mode hiss and chorus waves. We study the sensitivity of the model to the boundary conditions, global electric field, the electric field associated with subauroral polarization streams, electron loss rates, and radial diffusion coefficients. The results of the code are almost insensitive to the model parameters above 4.5 RERE, which indicates that the general dynamics of the electrons between 4.5 RE and the geostationary orbit can be explained by global convection. We found that the major discrepancies between the model and data can stem from the inaccurate electric field model and uncertainties in lifetimes. We show that additional mechanisms that are responsible for radial transport are required to explain the dynamics of ≥40‐keV electrons, and the inclusion of the radial diffusion rates that are typically assumed in radiation belt studies leads to a better agreement with the data. The overall effect of subauroral polarization streams on the electron phase space density profiles seems to be smaller than the uncertainties in other input parameters. This study is an initial step toward understanding the dynamics of these particles inside the geostationary orbit.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Nikita AseevORCiDGND, Yuri Y. ShpritsORCiD, Dedong WangORCiD, John WygantORCiD, Alexander DrozdovORCiDGND, Adam C. KellermanORCiD, Geoffrey D. ReevesORCiDGND
DOI:https://doi.org/10.1029/2018JA026031
ISSN:2169-9380
ISSN:2169-9402
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31008006
Titel des übergeordneten Werks (Englisch):Journal of geophysical research : Space physics
Verlag:American Geophysical Union
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:21.01.2019
Erscheinungsjahr:2019
Datum der Freischaltung:12.04.2021
Freies Schlagwort / Tag:electron transport; ensemble modeling; inner magnetosphere; magnetospheric convection; ring current electrons; wave-particle interactions
Band:124
Ausgabe:2
Seitenanzahl:19
Erste Seite:915
Letzte Seite:933
Fördernde Institution:Helmholtz-Gemeinschaft (HGF)Helmholtz Association; NASANational Aeronautics & Space Administration (NASA) [NNX15AI94G, NNX16AG78G]; NSFNational Science Foundation (NSF) [AGS-1552321]; project PROGRESS - EC Horizon 2020 Framework Programme (H2020) [637302]; Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [CRC 1294];
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.