• search hit 5 of 13
Back to Result List

XVII. Proper motions of the Small Magellanic Cloud and the Milky Way globular cluster 47 Tucanae

  • Aims. In this study we use multi-epoch near-infrared observations from the VISTA survey of the Magellanic Cloud system (VMC) to measure the proper motions of different stellar populations in a tile of 1.5 deg2 in size in the direction of the Galactic globular cluster 47 Tuc. We obtain the proper motion of the cluster itself, of the Small Magellanic Cloud (SMC), and of the field Milky Way stars. Methods. Stars of the three main stellar components are selected according to their spatial distributions and their distributions in colour−magnitude diagrams. Their average coordinate displacement is computed from the difference between multiple Ks-band observations for stars as faint as Ks = 19 mag. Proper motions are derived from the slope of the best-fitting line among ten VMC epochs over a time baseline of ~1 yr. Background galaxies are used to calibrate the absolute astrometric reference frame. Results. The resulting absolute proper motion of 47 Tuc is (μαcos(δ), μδ) = (+7.26 ± 0.03, −1.25 ± 0.03)Aims. In this study we use multi-epoch near-infrared observations from the VISTA survey of the Magellanic Cloud system (VMC) to measure the proper motions of different stellar populations in a tile of 1.5 deg2 in size in the direction of the Galactic globular cluster 47 Tuc. We obtain the proper motion of the cluster itself, of the Small Magellanic Cloud (SMC), and of the field Milky Way stars. Methods. Stars of the three main stellar components are selected according to their spatial distributions and their distributions in colour−magnitude diagrams. Their average coordinate displacement is computed from the difference between multiple Ks-band observations for stars as faint as Ks = 19 mag. Proper motions are derived from the slope of the best-fitting line among ten VMC epochs over a time baseline of ~1 yr. Background galaxies are used to calibrate the absolute astrometric reference frame. Results. The resulting absolute proper motion of 47 Tuc is (μαcos(δ), μδ) = (+7.26 ± 0.03, −1.25 ± 0.03) mas yr-1. This measurement refers to about 35 000 sources distributed between 10′ and 60′ from the cluster centre. For the SMC we obtain (μαcos(δ), μδ) = (+1.16 ± 0.07, −0.81 ± 0.07) mas yr-1 from about 5250 red clump and red giant branch stars. The absolute proper motion of the Milky Way population in the line of sight (l = 305.9, b = −44.9) of this VISTA tile is (μαcos(δ), μδ) = (+10.22 ± 0.14, −1.27 ± 0.12) mas yr-1 and has been calculated from about 4000 sources. Systematic uncertainties associated with the astrometric reference system are 0.18 mas yr-1. Thanks to the proper motion we detect 47 Tuc stars beyond its tidal radius.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Maria-Rosa L. CioniORCiD, Kenji Bekki, Leo Girardi, Richard de Grijs, Mike J. Irwin, Valentin D. Ivanov, Marcella Marconi, Joana M. Oliveira, Andres E. Piatti, Vincenzo Ripepi, Jacco Th. van Loon
DOI:https://doi.org/10.1051/0004-6361/201527004
ISSN:1432-0746
Title of parent work (English):Physical review : E, Statistical, nonlinear and soft matter physics
Publisher:EDP Sciences
Place of publishing:Les Ulis
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Magellanic Clouds; globular clusters: individual: 47 Tucanae; proper motions; surveys
Volume:586
Number of pages:16
First page:67
Last Page:75
Funding institution:German Academic Exchange Service; National Natural Science Foundation of China [11373010]; STFC [ST/J001333/1, ST/M001008/1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.