• search hit 3 of 3
Back to Result List

Local structure of network formers and network modifiers in silicate melts at high pressure and temperature conditions

Lokale Struktur der Netzwerkbildner und der Netzwerkwandler in silikatischen Schmelzen bei hohen Druck- und Temperaturbedingungen

  • Silicate melts are major components of the Earth’s interior and as such they make an essential contribution in igneous processes, in the dynamics of the solid Earth and the chemical development of the entire Earth. Macroscopic physical and chemical properties such as density, compressibility, viscosity, degree of polymerization etc. are determined by the atomic structure of the melt. Depending on the pressure, but also on the temperature and the chemical composition, silicate melts show different structural properties. These properties are best described by the local coordination environment, i.e. symmetry and number of neighbors (coordination number) of an atom, as well as the distance between the central atom and its neighbors (inter-atomic distance). With increasing pressure and temperature, i.e. with increasing depth in the Earth, the density of the melt increases, which can lead to changes in coordination number and distances. If the coordination number remains the same, the distance usually decreases. If the coordination numberSilicate melts are major components of the Earth’s interior and as such they make an essential contribution in igneous processes, in the dynamics of the solid Earth and the chemical development of the entire Earth. Macroscopic physical and chemical properties such as density, compressibility, viscosity, degree of polymerization etc. are determined by the atomic structure of the melt. Depending on the pressure, but also on the temperature and the chemical composition, silicate melts show different structural properties. These properties are best described by the local coordination environment, i.e. symmetry and number of neighbors (coordination number) of an atom, as well as the distance between the central atom and its neighbors (inter-atomic distance). With increasing pressure and temperature, i.e. with increasing depth in the Earth, the density of the melt increases, which can lead to changes in coordination number and distances. If the coordination number remains the same, the distance usually decreases. If the coordination number increases, the distance can increase. These general trends can, however, vary greatly, which can be attributed in particular to the chemical composition. Due to the fact that natural melts of the deep earth are not accessible to direct investigations, in order to understand their properties under the relevant conditions, extensive experimental and theoretical investigations have been carried out so far. This has often been studied using the example of amorphous samples of the end-members SiO2 and GeO2 , with the latter serving as a structural and chemical analog model to SiO2. Commonly, the experiments were carried out at high pressure and at room temperature. Natural melts are chemically much more complex than the simple end-member SiO2 and GeO2, so that observations made on them may lead to incorrect compression models. Furthermore, the investigations on glasses at room temperature can show potentially strong deviations from the properties of melts under natural thermodynamic conditions. The aim of this thesis was to explain the influence of the composition and the temperature on the structural properties of the melts at high pressures. To understand this, we studied complex alumino-germanate and alumino-silicate glasses. More precisely, we studied synthetic glasses that have a composition like the mineral albite and like a mixture of albite-diopside at the eutectic point. The albite glass is structurally similar to a simplified granitic melt, while the albite-diopside glass simulates a simplified basaltic melt. To study the local coordination environment of the elements, we used X-ray absorption spectroscopy in combination with a diamond anvil cell. Because the diamonds have a high absorbance for X-rays with energies below 10 keV, the direct investigation of the geologically relevant elements such as Si, Al, Ca, Mg etc. with this spectroscopic probe technique in combination with a diamond anvil cell is not possible. Therefore the glasses were doped with Ge and Sr. These elements serve partially or fully as substitutes for important major elements. In this sense, Ge serves as an a substitute for Si and other network formers, while Sr replaces network modifiers such as Ca, Na, Mg etc., as well as other cations with a large ionic radius. In the first step we studied the Ge K-edge in Ge-Albit-glass, NaAlGe3O8, at room temperature up to 131 GPa. This glass has a higher chemical complexity than SiO2 and GeO2, but it is still fully polymerized. The differences in the compression mechanism between this glass and the simple oxides can clearly be attributed to higher chemical complexity. The albite and albite-diopside compositions partially doped with Ge and Sr were probed at room temperature for Ge up to 164 GPa and for Sr up to 42 GPa. While the albite glass is nominally fully polymerized like NaAlGe3O8, the albite-diopside glass is partially depolymerized. The results show that structural changes take place in all three glasses in the first 25 to a maximum of 30 GPa, with both Ge and Sr reaching the maximum coordination number 6 and ∼9, respectively. At higher pressures, only isostructural shrinkage of the coordination polyhedra takes place in the glasses. The most important finding of the high pressure studies on the alumino-silicate and alumino-germanate glasses is that in these complex glasses the polyhedra show a much higher compressibility than what can be observed in the end-members. This is shown in particular by the strong shortening of the Ge-O distances in the amorphous NaAlGe3O8 and albite-diopside glass at pressures above 30 GPa. In addition to the effects of the composition on the compaction process, we investigated the influence of temperature on the structural changes. To do this, we probed the albite-diopside glass, as it is chemically most similar to the melts in the lower mantle. We studied the Ge K edge of the sample with a resistively heated and a laser-heated diamond anvil cell, for a pressure range of up to 48 GPa and a temperature range of up to 5000 K. High temperatures at which the sample is liquid and that are relevant for the Earth mantle, have a significant impact on the structural transformation, with a shift of approx. 30% to significantly lower pressures, compared to the glasses at room temperature and below 1000 K. The results of this thesis represent an important contribution to the understanding of the properties of melts at conditions of the lower mantle. In the context of the discussion about the existence and origin of ultra-dense silicate melts at the core-mantle boundary, these investigations show that the higher density compared to the surrounding material cannot be explained by only structural features, but by a distinct chemical composition. The results also suggest that only very low solubilities of noble gases are to be expected for melts in the lower mantle, so that the structural properties clearly influence the overall budget and transport of noble gases in the Earth’s mantle.show moreshow less
  • Silikatische Schmelzen sind wichtiger Bestandteil des Erdinneren und als solche leisten sie in magmatischen Prozessen einen wesentlichen Beitrag in der Dynamik der festen Erde und der chemischen Entwicklung des gesamten Erdköpers. Makroskopische physikalische und chemische Eigenschaften wie Dichte, Kompressibilität, Viskosität, Polymerisationsgrad etc. sind durch die atomare Struktur der Schmelzen bestimmt. In Abhängigkeit vom Druck, aber auch von der Temperatur und der chemischen Zusammensetzung zeigen silikatische Schmelzen unterschiedliche strukturelle Eigenschaften. Diese Eigenschaften sind am besten durch die lokale Koordinationsumgebung, d.h. Symmetrie und Anzahl der Nachbarn (Koordinationszahl) eines Atoms, sowie dem Abstand zwischen Zentralatom und Nachbarn (atomarer Abstand) beschrieben. Mit steigendem Druck und Temperatur, das heißt mit der zunehmenden Tiefe in der Erde, nimmt die Dichte der Schmelzen zu, welches zur Veränderung von Koordinationszahl und Abständen führen kann. Bei gleichbleibender Koordinationszahl nimmtSilikatische Schmelzen sind wichtiger Bestandteil des Erdinneren und als solche leisten sie in magmatischen Prozessen einen wesentlichen Beitrag in der Dynamik der festen Erde und der chemischen Entwicklung des gesamten Erdköpers. Makroskopische physikalische und chemische Eigenschaften wie Dichte, Kompressibilität, Viskosität, Polymerisationsgrad etc. sind durch die atomare Struktur der Schmelzen bestimmt. In Abhängigkeit vom Druck, aber auch von der Temperatur und der chemischen Zusammensetzung zeigen silikatische Schmelzen unterschiedliche strukturelle Eigenschaften. Diese Eigenschaften sind am besten durch die lokale Koordinationsumgebung, d.h. Symmetrie und Anzahl der Nachbarn (Koordinationszahl) eines Atoms, sowie dem Abstand zwischen Zentralatom und Nachbarn (atomarer Abstand) beschrieben. Mit steigendem Druck und Temperatur, das heißt mit der zunehmenden Tiefe in der Erde, nimmt die Dichte der Schmelzen zu, welches zur Veränderung von Koordinationszahl und Abständen führen kann. Bei gleichbleibender Koordinationszahl nimmt der Abstand in der Regel zu. Kommt es zu Erhöhung der Koordinationszahl kann der Abstand zunehmen. Diese allgemeinen Trends können allerdings stark variieren, welches insbesondere auf die chemische Zusammensetzung zurückzuführen ist. Dadurch, dass natürliche Schmelzen der tiefen Erde für direkte Untersuchungen nicht zugänglich sind, um ihre Eigenschaften unter den relevanten Bedingungen zu verstehen, wurden umfangreiche experimentelle und theoretische Untersuchungen bisher durchgeführt. Dies wurde häufig am Beispiel von amorphen Proben der Endglieder SiO2, und GeO2 studiert, wobei letzteres als strukturelles und chemisches Analogmodell zu SiO2 dient. Meistens wurden die Experimente bei hohem Druck und bei Raumtemperatur durchgeführt. Natürliche Schmelzen sind chemisch deutlich komplexer als die einfachen Endglieder SiO2 und GeO2, so dass die Beobachtungen an diesen möglicherweise zu falschen Verdichtungsmodellen führen können. Weiterhin können die Untersuchungen an Gläsern bei Raumtemperatur potentiell starke Abweichungen zu Eigenschaften von Schmelzen bei natürlichen thermodynamischen Bedingungen aufweisen. Das Ziel dieser Dissertation war es zu erläutern, welchen Einfluss die Zusammensetzung und die Temperatur auf die strukturelle Eigenschaften der Schmelzen unter hohen Drücken haben. Um das zu verstehen, haben wir komplexe alumino-germanatische und alumino-silikatische Gläser studiert. Genauer gesagt, wir haben synthetische Gläser studiert, die eine Zusammensetzung wie das Mineral Albit und wie eine Mischung von Albit-Diopsid im eutektischen Punkt haben. Das Albitglas ähnelt strukturell einer vereinfachten granitischen Schmelze, während das Albit-Diopsid-Glas eine vereinfachte basaltische Schmelze simuliert. Um die lokale Koordinationsumgebung der Elemente zu studieren, haben wir die Röntgenabsorptionsspektroskopie in Kombination mit einer Diamantstempelzelle benutzt. Dadurch, dass die Diamanten eine hohe Absorption für Röntgenstrahlung mit Energien unterhalb von 10 keV aufweisen, ist die unmittelbare Untersuchung der geologisch sehr relevanten Elemente wie Si, Al, Ca, Mg etc. mit dieser Spektroskopie in Kombination mit einer Diamantstempelzelle nicht möglich. Deswegen wurden die Gläser mit Ge und Sr dotiert. Diese Elemente dienen teilweise oder vollständig als Ersatzelemente für wichtige Hauptelemente. In diesem Sinne, dient Ge als Ersatzelement für Si und andere Netzwerkbildner, während Sr Netzwerkwandler wie Z.B. Ca, Na, Mg etc., sowie andere Kationen mit großem Ionenradius ersetzt. Im ersten Schritt haben wir die Ge K-Kante im Ge-Albit-Glass, NaAlGe3O8, bei Raumtemperatur bis 131 GPa untersucht. Dieses Glas hat eine höhere chemische Komplexität als SiO2 und GeO2, aber es ist immer noch vollständig polymerisiert. Die Unterschiede im Verdichtungsmechanismus zwischen diesem Glas und den einfachen Oxiden können so eindeutig auf höhere chemische Komplexität zurückgeführt werden. Die partiell mit Ge und Sr dotierten Albit und Albit-Diopsid-Zusammensetzungen wurden bei Raumtemperatur für Ge bis 164 GPa und für Sr bis 42 GPa untersucht. Während das Albitglass wie NaAlGe3O8 nominelll vollständig polymerisiert ist, ist das Albit-Diopsid Glas teilweise depolymerisiert. Die Ergebnisse zeigen, dass in allen drei Gläsern strukturelle An̈derungen in den ersten 25 bis maximal 30 GPa stattfinden, wobei beide Ge und Sr die maximale Koordinationszahl 6 bzw. ∼9 erreichen. Bei höheren Drücken findet in den Gläsern nur eine isostrukturelle Schrumpfung der Koordinationspolyeder statt. Der wichtigste Befund der Hochdruckstudien an den alumino-silikatischen und alumino-germanatischen Gläsern ist, dass in diesen komplexen Gläsern die Polyeder eine viel höhere Kompressibilität aufweisen als bei den Endgliedern zu beobachten. Das zeigt sich insbesondere durch die starke Verkürzung der Ge-O Abstände in dem amorphen NaAlGe3O8 und Albit-Diopsid-Glas bei Drücken über 30 GPa. Zusätzlich zu den Effekten der Zusammensetzung auf den Verdichtungsprozess, haben wir den Einfluss der Temperatur auf die strukturelle Änderungen untersucht. Dazu haben wir das Albit-Diopsid-Glas untersucht, da es den Schmelzen im unteren Mantel chemisch am ähnlichsten ist. Wir haben die Ge K-Kante der Probe mit einer resistiv-geheizten und einer Laser-geheizter Diamantstempelzelle untersucht, für einen Druckbereich bis zu 48 GPa, sowie einen Temperaturbereich bis 5000 K. Hohe Temperaturen, bei denen die Probe flüssig ist und die für den Erdmantel relevant sind, haben einen bedeutenden Einfluss auf die strukturelle Transformation. Diese wird um ca. 30% zu deutlich niedrigeren Drücken verschoben, im Vergleich zu den Gläsern bei Raumtemperatur und unterhalb von 1000 K. Die Ergebnisse dieser Dissertation stellen einen wichtigen Beitrag fur das Verständnis der Eigenschaften von Schmelzen unter Bedingungen des unteren Mantels dar. Im Kontext der Diskussion über die Existenz und den Ursprung von silikatischen Schmelzen mit ultrahoher Dichte, welche an der Grenze zwischen Mantel und Erdkern aufgrund seismologischer Daten vermutet werden, zeigen diese Untersuchugen, dass die im Vergleich zur Umgebung höhere Dichte nicht durch strukturelle Besonderheiten, sondern durch eine besondere chemische Zusammensetzung erklärt werden müssen. Außerdem legen die Ergebnisse nahe, dass für Schmelzen im unteren Erdmantel nur sehr geringe Löslichkeiten von Edelgasen zu erwarten sind, so dass die strukturellen Eigenschaften deutlich den Gesamthaushalt und Transport der Edelgase im Erdmantel beeinflussen.show moreshow less

Download full text files

  • SHA-512:a33dcc8e456c5c45cad3e1d899bda98815809f2642297a8a17707fbcabc548f67358368a60bf24a0f24ff730fa4e550a897b0503a08b6b894c602fa8c4f8e8f4

Export metadata

Metadaten
Author details:Marija KrstulovicORCiD
URN:urn:nbn:de:kobv:517-opus4-516415
DOI:https://doi.org/10.25932/publishup-51641
Reviewer(s):Jörg ErzingerGND, Sakura PascarelliORCiD, Guillaume MorardORCiD
Supervisor(s):Max Wilke, Sakura Pascarelli
Publication type:Doctoral Thesis
Language:English
Date of first publication:2021/09/15
Publication year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/08/20
Release date:2021/09/15
Tag:EXAFS; Gläser; Hochdruck; Spektroskopie; Verdichtung; XANES; XAS; lokale Struktur; silikatische Schmelzen
EXAFS; XANES; XAS; compression; glasses; high-pressure; local structure; silicate melts; spectroscopy
Number of pages:137
RVK - Regensburg classification:TG 4300, TH 1720, UT 2250
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.