• search hit 49 of 185
Back to Result List

River organic carbon fluxes modulated by hydrodynamic sorting of particulate organic matter

  • Rivers regulate the global carbon cycle by transferring particulate organic carbon (POC) from terrestrial landscapes to marine sedimentary basins, but the processes controlling the amount and composition of fluvially exported POC are poorly understood. We propose that hydrodynamic sorting processes modify POC fluxes during fluvial transit. We test this hypothesis by studying POC transported along a similar to 1,200 km reach of the Rio Bermejo, Argentina. Nanoscale secondary ion mass spectrometry revealed that POC was either fine, mineral-associated organic matter, or coarse discrete organic particles. Mineral-associated POC is more resistant to oxidation and has a lower particle settling velocity than discrete POC. Consequently, hydraulic sorting and downstream fining amplify the proportion of fine, mineral-associated POC from similar to 55% to similar to 78% over 1,220 km of downstream transit. This suggests that mineral-associated POC has a greater probability of export and preservation in marine basins than plant detritus, whichRivers regulate the global carbon cycle by transferring particulate organic carbon (POC) from terrestrial landscapes to marine sedimentary basins, but the processes controlling the amount and composition of fluvially exported POC are poorly understood. We propose that hydrodynamic sorting processes modify POC fluxes during fluvial transit. We test this hypothesis by studying POC transported along a similar to 1,200 km reach of the Rio Bermejo, Argentina. Nanoscale secondary ion mass spectrometry revealed that POC was either fine, mineral-associated organic matter, or coarse discrete organic particles. Mineral-associated POC is more resistant to oxidation and has a lower particle settling velocity than discrete POC. Consequently, hydraulic sorting and downstream fining amplify the proportion of fine, mineral-associated POC from similar to 55% to similar to 78% over 1,220 km of downstream transit. This suggests that mineral-associated POC has a greater probability of export and preservation in marine basins than plant detritus, which may be oxidized to CO2 during transit.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Marisa RepaschORCiDGND, Joel S. Scheingross, Niels HoviusORCiDGND, Andrea Vieth-HillebrandORCiD, Carsten W. MuellerORCiD, Carmen Höschen, Ricardo N. Szupiany, Dirk SachseORCiD
DOI:https://doi.org/10.1029/2021GL096343
ISSN:0094-8276
ISSN:1944-8007
Title of parent work (English):Geophysical research letters
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Date of first publication:2022/01/26
Publication year:2022
Release date:2024/07/02
Tag:NanoSIMS;; carbon fluxes; compound-specific stable isotopes; hydrodynamic sorting; rivers; sediment transport
Volume:49
Issue:3
Article number:e2021GL096343
Number of pages:11
Funding institution:Deutsche Forschungsgemeinschaft [STR 373/34-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.