• Treffer 1 von 1
Zurück zur Trefferliste

Fluorescence fluctuation spectroscopy techniques to quantify molecular interactions and dynamics in complex biological systems

  • Living cells rely on transport and interaction of biomolecules to perform their diverse functions. A powerful toolbox to study these highly dynamic processes in the native environment is provided by fluorescence fluctuation spectroscopy (FFS) techniques. In more detail, FFS takes advantage of the inherent dynamics present in biological systems, such as diffusion, to infer molecular parameters from fluctuations of the signal emitted by an ensemble of fluorescently tagged molecules. In particular, two parameters are accessible: the concentration of molecules and their transit times through the observation volume. In addition, molecular interactions can be measured by analyzing the average signal emitted per molecule - the molecular brightness - and the cross-correlation of signals detected from differently tagged species. In the present work, several FFS techniques were implemented and applied in different biological contexts. In particular, scanning fluorescence correlation spectroscopy (sFCS) was performed to measure protein dynamicsLiving cells rely on transport and interaction of biomolecules to perform their diverse functions. A powerful toolbox to study these highly dynamic processes in the native environment is provided by fluorescence fluctuation spectroscopy (FFS) techniques. In more detail, FFS takes advantage of the inherent dynamics present in biological systems, such as diffusion, to infer molecular parameters from fluctuations of the signal emitted by an ensemble of fluorescently tagged molecules. In particular, two parameters are accessible: the concentration of molecules and their transit times through the observation volume. In addition, molecular interactions can be measured by analyzing the average signal emitted per molecule - the molecular brightness - and the cross-correlation of signals detected from differently tagged species. In the present work, several FFS techniques were implemented and applied in different biological contexts. In particular, scanning fluorescence correlation spectroscopy (sFCS) was performed to measure protein dynamics and interactions at the plasma membrane (PM) of cells, and number and brightness (N&B) analysis to spatially map molecular aggregation. To account for technical limitations and sample related artifacts, e.g. detector noise, photobleaching, or background signal, several correction schemes were explored. In addition, sFCS was combined with spectral detection and higher moment analysis of the photon count distribution to resolve multiple species at the PM. Using scanning fluorescence cross-correlation spectroscopy and cross-correlation N&B, the interactions of amyloid precursor-like protein 1 (APLP1), a synaptic membrane protein, were investigated. It is shown for the first time directly in living cells, that APLP1 undergoes specific interactions at cell-cell contacts. It is further demonstrated that zinc ions induce formation of large APLP1 clusters that enrich at contact sites and bind to clusters on the opposing cell. Altogether, these results provide direct evidence that APLP1 is a zinc ion dependent neuronal adhesion protein. In the context of APLP1, discrepancies of oligomeric state estimates were observed, which were attributed to non-fluorescent states of the chosen red fluorescent protein (FP) tag mCardinal (mCard). Therefore, multiple FPs and their performance in FFS based measurements of protein interactions were systematically evaluated. The study revealed superior properties of monomeric enhanced green fluorescent protein (mEGFP) and mCherry2. Furthermore, a simple correction scheme allowed unbiased in situ measurements of protein oligomerization by quantifying non-fluorescent state fractions of FP tags. The procedure was experimentally confirmed for biologically relevant protein complexes consisting of up to 12 monomers. In the last part of this work, fluorescence correlation spectroscopy (FCS) and single particle tracking (SPT) were used to characterize diffusive transport dynamics in a bacterial biofilm model. Biofilms are surface adherent bacterial communities, whose structural organization is provided by extracellular polymeric substances (EPS) that form a viscous polymer hydrogel. The presented study revealed a probe size and polymer concentration dependent (anomalous) diffusion hindrance in a reconstituted EPS matrix system caused by polymer chain entanglement at physiological concentrations. This result indicates a meshwork-like organization of the biofilm matrix that allows free diffusion of small particles, but strongly hinders diffusion of larger particles such as bacteriophages. Finally, it is shown that depolymerization of the matrix by phage derived enzymes rapidly facilitated free diffusion. In the context of phage infections, such enzymes may provide a key to evade trapping in the biofilm matrix and promote efficient infection of bacteria. In combination with phage application, matrix depolymerizing enzymes may open up novel antimicrobial strategies against multiresistant bacterial strains, as a promising, more specific alternative to conventional antibiotics.zeige mehrzeige weniger
  • Die Funktion lebender Zellen basiert auf Transport und Interaktion von Biomolekülen. Zur genauen Untersuchung dieser dynamischen Prozesse in lebenden Zellen eignen sich Fluoreszenzfluktuationsspektroskopieverfahren (FFS). Diese nutzen durch Diffusion oder andere Prozesse auftretende Fluktuationen, um Größen auf molekularer Skala durch statistische Analyse des Signals fluoreszenzmarkierter Moleküle zu ermitteln. Insbesondere können die Konzentration der Moleküle und ihre mittlere Verweildauer im Beobachtungsvolumen quantifiziert werden. Außerdem lassen sich molekulare Interaktionen anhand des mittleren Signals pro Molekül, der sogenannten molekularen Helligkeit, und der Kreuzkorrelation der Signale verschieden markierter Moleküle untersuchen. In der vorliegenden Arbeit wurden verschiedene FFS Methoden etabliert und zur Erforschung biologischer Prozesse genutzt. Um Dynamiken und Bindungsvorgänge an der Zellmembran zu untersuchen, wurde Fluoreszenzkorrelationsspektroskopie (FCS) unter Nutzung eines linearen Scanwegs (sFCS) verwendet.Die Funktion lebender Zellen basiert auf Transport und Interaktion von Biomolekülen. Zur genauen Untersuchung dieser dynamischen Prozesse in lebenden Zellen eignen sich Fluoreszenzfluktuationsspektroskopieverfahren (FFS). Diese nutzen durch Diffusion oder andere Prozesse auftretende Fluktuationen, um Größen auf molekularer Skala durch statistische Analyse des Signals fluoreszenzmarkierter Moleküle zu ermitteln. Insbesondere können die Konzentration der Moleküle und ihre mittlere Verweildauer im Beobachtungsvolumen quantifiziert werden. Außerdem lassen sich molekulare Interaktionen anhand des mittleren Signals pro Molekül, der sogenannten molekularen Helligkeit, und der Kreuzkorrelation der Signale verschieden markierter Moleküle untersuchen. In der vorliegenden Arbeit wurden verschiedene FFS Methoden etabliert und zur Erforschung biologischer Prozesse genutzt. Um Dynamiken und Bindungsvorgänge an der Zellmembran zu untersuchen, wurde Fluoreszenzkorrelationsspektroskopie (FCS) unter Nutzung eines linearen Scanwegs (sFCS) verwendet. Außerdem wurde die Oligomerisierung von Proteinen mittels Number&Brightness (N&B) Analyse räumlich aufgelöst. Verschiedene Korrekturverfahren wurden validiert und angewandt, um die erhobenen Daten von Störquellen wie Bleichen der Fluorophore oder Hintergrundsignalen zu bereinigen sowie instrumentelle Größen wie Detektionsrauschen zu kalibrieren. Darüber hinaus konnten durch spektral aufgelöste Aufnahme des Fluoreszenzsignals sowie Analyse höherer statistischer Momente mehrere Molekülpopulationen gleichzeitig detektiert werden. Mittels Zweifarben-sFCS und -N&B wurde anschließend das Amyloidvorläuferprotein APLP1 untersucht, welches an Synapsen, den Kontaktstellen von Neuronen, lokalisiert. Mit dem verwendeten Ansatz konnte zum ersten Mal direkt in lebenden Zellen nachgewiesen werden, dass APLP1 spezifische Bindungen an Zellkontaktstellen eingeht. Des Weiteren konnte gezeigt werden, dass Zinkionen eine Anreicherung und verstärkte Interaktion von APLP1 induzieren. Diese Beobachtungen unterstützen die Hypothese, dass APLP1 die Adhäsion benachbarter Zellen vermittelt und diese Funktion konzentrationsabhängig durch Zinkionen reguliert wird. Zur Untersuchung von APLP1 wurde es genetisch mit Fluoreszenzproteinen wie dem rot fluoreszierenden Protein mCardinal fusioniert. Bei der Bestimmung des Oligomerisierungszustands von APLP1 ergaben sich unter Verwendung verschiedener Fluorophore unterschiedliche Ergebnisse. Diese deuteten darauf hin, dass ein Teil der mCardinal Proteine nicht fluoreszierte. Um zu einem tieferen Verständnis dieses Phänomens und dessen Einfluss auf Interaktionsmessungen zu gelangen, wurden häufig verwendete Fluoreszenzproteine systematisch evaluiert. Auf diese Weise konnten zwei Proteine identifiziert werden, grün fluoreszierendes mEGFP und rot fluoreszierendes mCherry2, die den geringsten Anteil an nicht fluoreszierenden Zuständen aufweisen und sich deshalb am besten für Interaktionsmessungen eignen. Mittels eines einfachen Korrekturschemas basierend auf der experimentellen Bestimmung des nicht fluoreszierenden Anteils konnten genaue Messungen des Oligomerisierungszustandes von Proteinen in lebenden Zellen vorgenommen werden, was für biologisch relevante Proteine mit bis zu 12 Untereinheiten erfolgreich gezeigt werden konnte. Im letzten Teil der Arbeit wurden Diffusionsvorgänge in bakteriellen Biofilmen untersucht. Biofilme werden von Bakterienkolonien gebildet, die auf Oberflächen wachsen und beispielsweise zur Verbreitung multiresistenter Keime in Krankenhäusern beitragen. Bei der Bildung von Biofilmen spielen Polymere, die von Bakterien produziert werden, eine entscheidende Rolle. Diese füllen die Zwischenräume im Biofilm mit einer Art Gel, der sogenannten Biofilmmatrix. Anhand von FCS und Einzelpartikelverfolgung konnte gezeigt werden, dass Diffusion von Partikeln in einem rekonstituierten Gel stark von deren Größe sowie der Konzentration der Polymere abhängt. Das untersuchte System bestand hierbei aus langkettigen Zuckermolekülen, die von Biofilmen aufgereinigt wurden und als Modellsystem für die Biofilmmatrix dienten. Im physiologischen Konzentrationsbereich bildete sich ein Polymernetzwerk aus, durch das sich kleine Teilchen frei bewegen konnten, größere Partikel wie z.B. Bakteriophagen jedoch stark verlangsamt wurden. Dies lässt vermuten, dass die Biofilmmatrix die Funktion eines größenabhängigen Filters aufweist. Zersetzung der Polymere mittels Enzymen, die natürlich in Bakteriophagen vorkommen, führte zu freier Diffusion auch größerer Partikel. Die gewonnen Ergebnisse deuten darauf hin, dass solche Enzyme für Phagen eine Schlüsselfunktion besitzen, um Biofilme besser durchdringen und somit Bakterien effizienter infizieren zu können. In Kombination mit Bakteriophagen könnten (zielgerichtet optimierte) Enzyme dieser Art eine vielversprechende, spezifischere Alternative zu konventionellen Antibiotika bei der Bekämpfung multiresistenter Keime darstellen.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • SHA-512:4c2e08bf95a646495ceab0faa80cbcb7efa498d9c57a43f1bbefc520402bfa55d09028bb0c66aca949c6c4fbdcc237e13547b89e8c90a53f46fe61e0f9d7e428

Metadaten exportieren

Metadaten
Verfasserangaben:Valentin DunsingORCiDGND
URN:urn:nbn:de:kobv:517-opus4-478494
DOI:https://doi.org/10.25932/publishup-47849
übersetzter Titel (Deutsch):Fluoreszenzfluktuationsspektroskopieverfahren zur Bestimmung molekularer Interaktionen und Dynamiken in komplexen biologischen Systemen
Gutachter*in(nen):Salvatore ChiantiaORCiDGND, Carsten BetaORCiDGND, Thorsten WohlandORCiD
Betreuer*in(nen):Salvatore Chiantia
Publikationstyp:Dissertation
Sprache:Englisch
Erscheinungsjahr:2020
Veröffentlichende Institution:Universität Potsdam
Titel verleihende Institution:Universität Potsdam
Datum der Abschlussprüfung:15.07.2020
Datum der Freischaltung:08.10.2020
Freies Schlagwort / Tag:Biofilme; Fluoreszenzfluktuationsspektroskopie; Fluoreszenzproteine; Zell-zell Adhäsion
Cell-cell adhesion; Fluorescence fluctuation spectroscopy; biofilms; fluorescent proteins
Seitenanzahl:VII, 164, XXV
RVK - Regensburger Verbundklassifikation:UH 5400, UX 1320, VG 8757
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.