• Treffer 2 von 4
Zurück zur Trefferliste

The periglacial engine of mountain erosion

  • With accelerating climate cooling in the late Cenozoic, glacial and periglacial erosion became more widespread on the surface of the Earth. The resultant shift in erosion patterns significantly changed the large-scale morphology of many mountain ranges worldwide. Whereas the glacial fingerprint is easily distinguished by its characteristic fjords and U-shaped valleys, the periglacial fingerprint is more subtle but potentially prevails in some mid- to high-latitude landscapes. Previous models have advocated a frost-driven control on debris production at steep headwalls and glacial valley sides. Here we investigate the important role that periglacial processes also play in less steep parts of mountain landscapes. Understanding the influences of frost-driven processes in low-relief areas requires a focus on the consequences of an accreting soil mantle, which characterises such surfaces. We present a new model that quantifies two key physical processes: frost cracking and frost creep, as a function of both temperature and sedimentWith accelerating climate cooling in the late Cenozoic, glacial and periglacial erosion became more widespread on the surface of the Earth. The resultant shift in erosion patterns significantly changed the large-scale morphology of many mountain ranges worldwide. Whereas the glacial fingerprint is easily distinguished by its characteristic fjords and U-shaped valleys, the periglacial fingerprint is more subtle but potentially prevails in some mid- to high-latitude landscapes. Previous models have advocated a frost-driven control on debris production at steep headwalls and glacial valley sides. Here we investigate the important role that periglacial processes also play in less steep parts of mountain landscapes. Understanding the influences of frost-driven processes in low-relief areas requires a focus on the consequences of an accreting soil mantle, which characterises such surfaces. We present a new model that quantifies two key physical processes: frost cracking and frost creep, as a function of both temperature and sediment thickness. Our results yield new insights into how climate and sediment transport properties combine to scale the intensity of periglacial processes. The thickness of the soil mantle strongly modulates the relation between climate and the intensity of mechanical weathering and sediment flux. Our results also point to an offset between the conditions that promote frost cracking and those that promote frost creep, indicating that a stable climate can provide optimal conditions for only one of those processes at a time. Finally, quantifying these relations also opens up the possibility of including periglacial processes in large-scale, long-term landscape evolution models, as demonstrated in a companion paper.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr530.pdfeng
    (4781KB)

    SHA-1: 3def10a3c2b2b02aae692f0ea434796715ee2f60

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Jane Lund Andersen, David L. Egholm, Mads Faurschou Knudsen, John D. JansenORCiD, S. B. Nielsen
URN:urn:nbn:de:kobv:517-opus4-409656
DOI:https://doi.org/10.25932/publishup-40965
ISSN:1866-8372
Titel des übergeordneten Werks (Englisch):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Untertitel (Englisch):Part 1: Rates of frost cracking and frost creep
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (530)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:18.01.2019
Erscheinungsjahr:2015
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:18.01.2019
Freies Schlagwort / Tag:New-Zealand; bedrock; evolution; ice-sheet; mantled hillslopes; model; rock; sediment transport; soil production function; southern Alps
Ausgabe:530
Seitenanzahl:16
Quelle:Earth Surface Dynamics 3 (2015), pp. 447–462 DOI 10.5194/esurf-3-447-2015
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Publikationsweg:Open Access
Fördermittelquelle:Copernicus
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.