• search hit 5 of 5
Back to Result List

Improving a distributed hydrological model using evapotranspiration-related boundary conditions as additional constraints in a data-scarce river basin

  • Many hydrological models have been calibrated and validated using hydrographs alone. Because streamflow integrates water fluxes in space, many distributed hydrological models tend to have multiple feasible descriptions of hydrological processes. This equifinality usually leads to substantial prediction uncertainty. In this study, additional constraintsnamely, the spatial patterns of long-term average evapotranspiration (ET), shallow groundwater level, and land cover changewere used to investigate the reduction of equifinality and prediction uncertainty in the Soil and Water Assessment Tool (SWAT) in the Wami River basin in Tanzania. The additional constraints were used in the set-up, parameter emulation and calibration of the SWAT model termed an improved hydrological model (IHM). The IHM was then compared with a classical hydrological model (CHM) that was also developed using the SWAT model but without additional constraints. In the calibration, the CHM used only the hydrograph, but the IHM used the hydrograph and the spatial patternMany hydrological models have been calibrated and validated using hydrographs alone. Because streamflow integrates water fluxes in space, many distributed hydrological models tend to have multiple feasible descriptions of hydrological processes. This equifinality usually leads to substantial prediction uncertainty. In this study, additional constraintsnamely, the spatial patterns of long-term average evapotranspiration (ET), shallow groundwater level, and land cover changewere used to investigate the reduction of equifinality and prediction uncertainty in the Soil and Water Assessment Tool (SWAT) in the Wami River basin in Tanzania. The additional constraints were used in the set-up, parameter emulation and calibration of the SWAT model termed an improved hydrological model (IHM). The IHM was then compared with a classical hydrological model (CHM) that was also developed using the SWAT model but without additional constraints. In the calibration, the CHM used only the hydrograph, but the IHM used the hydrograph and the spatial pattern of long-term average ET as an additional constraint. The IHM produced a single, unique behavioural simulation, whereas the CHM produced many behavioural simulations that resulted in prediction uncertainty. The performance of the IHM with respect to the hydrograph was more consistent than that of the CHM, and the former clearly captured the mean behaviour of ET in the river basin. Therefore, we conclude that additional constraints substantially reduce equifinality and prediction uncertainty in a distributed hydrological model.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Frank Joseph WamburaORCiD, Ottfried Dietrich, Gunnar LischeidORCiDGND
DOI:https://doi.org/10.1002/hyp.11453
ISSN:0885-6087
ISSN:1099-1085
Title of parent work (English):Hydrological processes
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Date of first publication:2018/01/29
Publication year:2018
Release date:2022/01/06
Tag:SWAT; data scarcity; equifinality; evapotranspiration; parameter emulation; prediction uncertainty
Volume:32
Issue:6
Number of pages:17
First page:759
Last Page:775
Funding institution:Ardhi University (ARU); German Academic Exchange Service (DAAD)Deutscher Akademischer Austausch Dienst (DAAD); Tanzania Commission for Universities (TCU)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.