• search hit 1 of 6
Back to Result List

The transition from peraluminous to peralkaline granitic melts: Evidence from melt inclusions and accessory minerals

  • Fractional crystallization of peraluminous F- and H(2)O-rich granite magmas progressively enriches the remaining melt with volatiles. We show that, at saturation, the melt may separate into two immiscible conjugate melt fractions, one of the fractions shows increasing peraluminosity and the other increasing peralkalinity. These melt fractions also fractionate the incompatible elements to significantly different degrees. Coexisting melt fractions have differing chemical and physical properties and, due to their high density and viscosity contrasts, they will tend to separate readily from each other. Once separated, each melt fraction evolves independently in response to changing T/P/X conditions and further immiscibility events may occur, each generating its own conjugate pair of melt fractions. The strongly peralkaline melt fractions in particular are very reactive and commonly react until equilibrium is attained. Consequently, the peralkaline melt fraction is commonly preserved only in the isolated melt and mineral inclusions. WeFractional crystallization of peraluminous F- and H(2)O-rich granite magmas progressively enriches the remaining melt with volatiles. We show that, at saturation, the melt may separate into two immiscible conjugate melt fractions, one of the fractions shows increasing peraluminosity and the other increasing peralkalinity. These melt fractions also fractionate the incompatible elements to significantly different degrees. Coexisting melt fractions have differing chemical and physical properties and, due to their high density and viscosity contrasts, they will tend to separate readily from each other. Once separated, each melt fraction evolves independently in response to changing T/P/X conditions and further immiscibility events may occur, each generating its own conjugate pair of melt fractions. The strongly peralkaline melt fractions in particular are very reactive and commonly react until equilibrium is attained. Consequently, the peralkaline melt fraction is commonly preserved only in the isolated melt and mineral inclusions. We demonstrate that the differences between melt fractions that can be seen most clearly in differing melt inclusion compositions are also visible in the composition of the resulting ore-forming and accessory minerals, and are visible on scales from a few micrometers to hundreds of meters.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Rainer ThomasORCiD, J. D. Webster, Dieter Rhede, W. Seifert, Karen Rickers, Hans-Jürgen FörsterGND, Wilhelm Heinrich, P. Davidson
DOI:https://doi.org/10.1016/j.lithos.2006.03.013
ISSN:0024-4937
Title of parent work (English):Lithos : an international journal of mineralogy, petrology, and geochemistry
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2006
Publication year:2006
Release date:2020/05/12
Tag:accessory minerals; granite melts; magma evolution; melt inclusions; melt-melt immiscibility; peralkalinity; peraluminosity
Volume:91
Issue:1-4
Number of pages:13
First page:137
Last Page:149
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.