• search hit 3 of 4
Back to Result List

Imaging by sensitized oxygenations of photochromic anthracene films

  • The aliphatic anthracene compound 1 and the oligomeric anthracene 2 were synthesized. Thin films of 1 and 2 mixed with the sensitizers tetraphenylporphyrin (TPP) and methylene blue (MB) were irradiated with visible light in air. Upon formation of singlet oxygen, the anthracene units were converted quantitatively to the corresponding endoperoxides. Heating of the irradiated samples afforded the parent anthracenes with high yields. Here, we demonstrate that the kinetics and reversibility of this reaction strongly depend on the microenvironment of the anthracene groups in the two compounds. The photooxidation of thin films of I is accompanied by interesting changes in the morphology of the film and allows the first application of 1 as a nondestructive negative-tone photo-resist for lithography and as an oxidizing ink. The morphology of 2 remained unchanged after photooxidation as a result of the stabilizing oligomer backbone. This stabilizing effect significantly improves the photochromic performance of 2. The reversibility of theThe aliphatic anthracene compound 1 and the oligomeric anthracene 2 were synthesized. Thin films of 1 and 2 mixed with the sensitizers tetraphenylporphyrin (TPP) and methylene blue (MB) were irradiated with visible light in air. Upon formation of singlet oxygen, the anthracene units were converted quantitatively to the corresponding endoperoxides. Heating of the irradiated samples afforded the parent anthracenes with high yields. Here, we demonstrate that the kinetics and reversibility of this reaction strongly depend on the microenvironment of the anthracene groups in the two compounds. The photooxidation of thin films of I is accompanied by interesting changes in the morphology of the film and allows the first application of 1 as a nondestructive negative-tone photo-resist for lithography and as an oxidizing ink. The morphology of 2 remained unchanged after photooxidation as a result of the stabilizing oligomer backbone. This stabilizing effect significantly improves the photochromic performance of 2. The reversibility of the photooxidation is very high (> 90%) for oligomeric films of 2 after several cycles of irradiation and beating. Decomposition of the anthracene and a loss of the activity of the sensitizer diminish slightly the performance of the monomeric species.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Werner FudickarORCiDGND, Torsten LinkerORCiDGND
DOI:https://doi.org/10.1002/chem.200600387
ISSN:0947-6539
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/17004286
Title of parent work (English):Chemistry - a European journal
Subtitle (German):Examination of effects that improve performance and reversibility
Publisher:WILEY‐VCH
Place of publishing:Weinheim
Publication type:Article
Language:English
Date of first publication:2006/12/01
Publication year:2006
Release date:2020/04/14
Tag:anthracenes; lithography; photochromism; singlet oxygen; thin films
Volume:12
Number of pages:8
First page:9276
Last Page:9283
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.