• search hit 3 of 5
Back to Result List

Influence of ring faulting in localizing surface deformation at subsiding calderas

  • Caldera unrest can lead to major volcanic eruptions. Analysis of subtle subsidence or inflation at calderas helps understanding of their subsurface volcanic processes and related hazards. Several subsiding calderas have shown similar patterns of ground deformation composed of broad subsidence affecting the entire volcanic edifice and stronger localized subsidence focused inside the caldera. Physical models of internal deformation sources used to explain these observations typically consist of two magma reservoirs at different depths in an elastic half-space. However, such models ignore important subsurface structures, such as ring faults, that may influence the deformation pattern. Here we use both analog subsidence experiments and boundary element modeling to study the three-dimensional geometry and kinematics of caldera subsidence processes, evolving from an initial downsag to a later collapse stage. We propose that broad subsidence is mainly caused by volume decrease within a single magma reservoir, whereas buried ring-faultCaldera unrest can lead to major volcanic eruptions. Analysis of subtle subsidence or inflation at calderas helps understanding of their subsurface volcanic processes and related hazards. Several subsiding calderas have shown similar patterns of ground deformation composed of broad subsidence affecting the entire volcanic edifice and stronger localized subsidence focused inside the caldera. Physical models of internal deformation sources used to explain these observations typically consist of two magma reservoirs at different depths in an elastic half-space. However, such models ignore important subsurface structures, such as ring faults, that may influence the deformation pattern. Here we use both analog subsidence experiments and boundary element modeling to study the three-dimensional geometry and kinematics of caldera subsidence processes, evolving from an initial downsag to a later collapse stage. We propose that broad subsidence is mainly caused by volume decrease within a single magma reservoir, whereas buried ring-fault activity localizes the deformation within the caldera. Omitting ring faulting in physical models of subsiding calderas and using multiple point/sill-like sources instead can result in erroneous estimates of magma reservoir depths and volume changes. (C) 2019 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Yuan-Kai LiuORCiD, Joël RuchORCiD, Hannes Vasyura-BathkeORCiDGND, Sigurjón JónssonORCiDGND
DOI:https://doi.org/10.1016/j.epsl.2019.115784
ISSN:0012-821X
ISSN:1385-013X
Title of parent work (English):Earth & planetary science letters
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/10/06
Tag:InSAR; analog models; boundary element modeling; caldera collapse; ring faulting; volcanic deformation
Volume:526
Number of pages:12
Funding institution:KAUSTKing Abdullah University of Science & Technology [BAS/1/1353-01-01]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.