The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 66 of 43679
Back to Result List

Characterizing hydrological processes within kettle holes using stable water isotopes in the Uckermark of northern Brandenburg, Germany

  • Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (delta O-18) and hydrogen (delta H-2), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) wereUnderstanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (delta O-18) and hydrogen (delta H-2), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Stuart Andrew Vyse, Majid Taie Semiromi, Gunnar LischeidORCiDGND, Christoph MerzORCiD
DOI:https://doi.org/10.1002/hyp.13699
ISSN:0885-6087
ISSN:1099-1085
Title of parent work (English):Hydrological Processes
Publisher:Wiley
Place of publishing:New York
Publication type:Article
Language:English
Date of first publication:2020/02/18
Publication year:2020
Release date:2024/03/15
Tag:evaporation; groundwater inflow; kettle hole; stable water isotope; surface–groundwater interactions
Volume:34
Issue:8
Number of pages:20
First page:1868
Last Page:1887
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Zweitveröffentlichung in der Schriftenreihe Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 1392
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.