• Treffer 6 von 13
Zurück zur Trefferliste

Kinetics and mechanism of plasmon-driven dehalogenation reaction of brominated purine nucleobases on Ag and Au

  • Plasmon-driven photocatalysis is an emerging and promising application of noble metal nanoparticles (NPs). An understanding of the fundamental aspects of plasmon interaction with molecules and factors controlling their reaction rate in a heterogeneous system is of high importance. Therefore, the dehalogenation kinetics of 8-bromoguanine (BrGua) and 8-bromoadenine (BrAde) on aggregated surfaces of silver (Ag) and gold (Au) NPs have been studied to understand the reaction kinetics and the underlying reaction mechanism prevalent in heterogeneous reaction systems induced by plasmons monitored by surface enhanced Raman scattering (SERS). We conclude that the time-average constant concentration of hot electrons and the time scale of dissociation of transient negative ions (TNI) are crucial in defining the reaction rate law based on a proposed kinetic model. An overall higher reaction rate of dehalogenation is observed on Ag compared with Au, which is explained by the favorable hot-hole scavenging by the reaction product and the byproduct.Plasmon-driven photocatalysis is an emerging and promising application of noble metal nanoparticles (NPs). An understanding of the fundamental aspects of plasmon interaction with molecules and factors controlling their reaction rate in a heterogeneous system is of high importance. Therefore, the dehalogenation kinetics of 8-bromoguanine (BrGua) and 8-bromoadenine (BrAde) on aggregated surfaces of silver (Ag) and gold (Au) NPs have been studied to understand the reaction kinetics and the underlying reaction mechanism prevalent in heterogeneous reaction systems induced by plasmons monitored by surface enhanced Raman scattering (SERS). We conclude that the time-average constant concentration of hot electrons and the time scale of dissociation of transient negative ions (TNI) are crucial in defining the reaction rate law based on a proposed kinetic model. An overall higher reaction rate of dehalogenation is observed on Ag compared with Au, which is explained by the favorable hot-hole scavenging by the reaction product and the byproduct. We therefore arrive at the conclusion that insufficient hole deactivation could retard the reaction rate significantly, marking itself as rate-determining step for the overall reaction. The wavelength dependency of the reaction rate normalized to absorbed optical power indicates the nonthermal nature of the plasmon-driven reaction. The study therefore lays a general approach toward understanding the kinetics and reaction mechanism of a plasmon-driven reaction in a heterogeneous system, and furthermore, it leads to a better understanding of the reactivity of brominated purine derivatives on Ag and Au, which could in the future be exploited, for example, in plasmon-assisted cancer therapy.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Anushree DuttaORCiD, Robin SchürmannORCiDGND, Sergio Kogikoski JuniorORCiD, Niclas S. MuellerORCiD, Stephanie ReichORCiD, Ilko BaldORCiDGND
DOI:https://doi.org/10.1021/acscatal.1c01851
ISSN:2155-5435
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/34239772
Titel des übergeordneten Werks (Englisch):ACS catalysis / American Chemical Society
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:23.06.2021
Erscheinungsjahr:2021
Datum der Freischaltung:06.09.2023
Freies Schlagwort / Tag:SERS; brominated; fractal kinetics; hole scavengers; hot-electrons; plasmon-driven catalysis; purines
Band:11
Ausgabe:13
Seitenanzahl:12
Erste Seite:8370
Letzte Seite:8381
Fördernde Institution:European Research Council (ERC)European Research Council (ERC)European Commission [772752]; Focus Area NanoScale of Freie Universitaet Berlin; European Research Council (ERC) within the project DarkSERSEuropean Research Council (ERC) [772108]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.