• search hit 2 of 9
Back to Result List

HE 0435-1223 : a wide separation quadruple QSO and gravitational lens

  • We report the discovery of a new gravitationally lensed QSO, at a redshift z = 1.689, with four QSO components in a cross-shaped arrangement around a bright galaxy. The maximum separation between images is 2farcs 6, enabling a reliable decomposition of the system. Three of the QSO components have g =~ 19.6, while component A is about 0.6 mag brighter. The four components have nearly identical colours, suggesting little if any dust extinction in the foreground galaxy. The lensing galaxy is prominent in the i band, weaker in r and not detected in g. Its spatial profile is that of an elliptical galaxy with a scale length of ~ 12 kpc. Combining the measured colours and a mass model for the lens, we estimate a most likely redshift range of 0.3 < z < 0.4. Predicted time delays between the components are la 10 days. The QSO shows evidence for variability, with total g band magnitudes of 17.89 and 17.71 for two epochs separated by ~ 2 months. However, the relative fluxes of the components did not change, indicating that the variations areWe report the discovery of a new gravitationally lensed QSO, at a redshift z = 1.689, with four QSO components in a cross-shaped arrangement around a bright galaxy. The maximum separation between images is 2farcs 6, enabling a reliable decomposition of the system. Three of the QSO components have g =~ 19.6, while component A is about 0.6 mag brighter. The four components have nearly identical colours, suggesting little if any dust extinction in the foreground galaxy. The lensing galaxy is prominent in the i band, weaker in r and not detected in g. Its spatial profile is that of an elliptical galaxy with a scale length of ~ 12 kpc. Combining the measured colours and a mass model for the lens, we estimate a most likely redshift range of 0.3 < z < 0.4. Predicted time delays between the components are la 10 days. The QSO shows evidence for variability, with total g band magnitudes of 17.89 and 17.71 for two epochs separated by ~ 2 months. However, the relative fluxes of the components did not change, indicating that the variations are intrinsic to the QSO rather than induced by microlensing. Based in part on observations obtained with the Baade 6.5-m telescope of the Magellan Consortium. Also based in part on observations collected at the European Southern Observatory, La Silla, Chile.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Lutz WisotzkiORCiDGND, P. L. Schechter, H. V. Bradt, Janine Heinmüller, Dieter Reimers
Publication type:Article
Language:English
Year of first publication:2002
Publication year:2002
Release date:2017/03/24
Source:Astronomy and Astrophysics. - 395 (2002), 1, S. 17 - 23
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.