• search hit 6 of 21
Back to Result List

Carotenoid biosynthesis of pak choi (Brassica rapa ssp chinensis) sprouts grown under different light-emitting diodes during the diurnal course

  • Light-emitting diodes (LEDs) are considered the future of greenhouse lighting. This study investigates the carotenoid concentrations of pak choi sprouts after growth under blue, red and white LEDs at six different time points. Furthermore, the diurnal changes of RNA transcripts of key genes of the carotenoid biosynthesis pathway as well as of the carotenoid cleavage dioxygenase 4 (CCD4) gene and of the transcription factor genes elongated hypocotyl 5 (HY5) and circadian clock associated 1 (CCA1) were investigated. The carotenoid concentrations were steady throughout the day, but showed a small maximum in the afternoon. An average total carotenoid concentration of 536 +/- 29 ng mg(-1) DM produced under white LEDs was measured, which is comparable to previously described field-grown levels. The carotenoid concentrations were slightly lower under blue or red LEDs. Moreover, the diurnal RNA transcript rhythms of most of the carotenoid biosynthesis genes showed an increase during the light period, which can be correlated to the carotenoidLight-emitting diodes (LEDs) are considered the future of greenhouse lighting. This study investigates the carotenoid concentrations of pak choi sprouts after growth under blue, red and white LEDs at six different time points. Furthermore, the diurnal changes of RNA transcripts of key genes of the carotenoid biosynthesis pathway as well as of the carotenoid cleavage dioxygenase 4 (CCD4) gene and of the transcription factor genes elongated hypocotyl 5 (HY5) and circadian clock associated 1 (CCA1) were investigated. The carotenoid concentrations were steady throughout the day, but showed a small maximum in the afternoon. An average total carotenoid concentration of 536 +/- 29 ng mg(-1) DM produced under white LEDs was measured, which is comparable to previously described field-grown levels. The carotenoid concentrations were slightly lower under blue or red LEDs. Moreover, the diurnal RNA transcript rhythms of most of the carotenoid biosynthesis genes showed an increase during the light period, which can be correlated to the carotenoid maxima in the afternoon. Blue LEDs caused the highest transcriptional induction of biosynthetic genes as well as of CCD4, thereby indicating an increased flux through the pathway. In addition, the highest levels of HY5 transcripts and CCA1 transcripts were determined under blue LEDs.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Katja FredeORCiD, Monika SchreinerORCiDGND, R. Zrenner, Jan GraefeORCiD, Susanne BaldermannORCiDGND
DOI:https://doi.org/10.1039/c8pp00136g
ISSN:1474-905X
ISSN:1474-9092
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/30065986
Title of parent work (English):Photochemical & photobiological sciences
Publisher:Royal Society of Chemistry
Place of publishing:Cambridge
Publication type:Article
Language:English
Date of first publication:2018/08/01
Publication year:2018
Release date:2021/09/21
Volume:17
Issue:10
Number of pages:12
First page:1289
Last Page:1300
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (English):License LogoCreative Commons - Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Unported
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.