• search hit 3 of 2763
Back to Result List

A novel high-resolution gridded precipitation dataset for peruvian and ecuadorian watersheds

  • A novel approach for estimating precipitation patterns is developed here and applied to generate a new hydrologically corrected daily precipitation dataset, called RAIN4PE (Rain for Peru and Ecuador), at 0.1 degrees spatial resolution for the period 1981-2015 covering Peru and Ecuador. It is based on the application of 1) the random forest method to merge multisource precipitation estimates (gauge, satellite, and reanalysis) with terrain elevation, and 2) observed and modeled streamflow data to first detect biases and second further adjust gridded precipitation by inversely applying the simulated results of the ecohydrological model SWAT (Soil and Water Assessment Tool). Hydrological results using RAIN4PE as input for the Peruvian and Ecuadorian catchments were compared against the ones when feeding other uncorrected (CHIRP and ERA5) and gauge-corrected (CHIRPS, MSWEP, and PISCO) precipitation datasets into the model. For that, SWAT was calibrated and validated at 72 river sections for each dataset using a range of performanceA novel approach for estimating precipitation patterns is developed here and applied to generate a new hydrologically corrected daily precipitation dataset, called RAIN4PE (Rain for Peru and Ecuador), at 0.1 degrees spatial resolution for the period 1981-2015 covering Peru and Ecuador. It is based on the application of 1) the random forest method to merge multisource precipitation estimates (gauge, satellite, and reanalysis) with terrain elevation, and 2) observed and modeled streamflow data to first detect biases and second further adjust gridded precipitation by inversely applying the simulated results of the ecohydrological model SWAT (Soil and Water Assessment Tool). Hydrological results using RAIN4PE as input for the Peruvian and Ecuadorian catchments were compared against the ones when feeding other uncorrected (CHIRP and ERA5) and gauge-corrected (CHIRPS, MSWEP, and PISCO) precipitation datasets into the model. For that, SWAT was calibrated and validated at 72 river sections for each dataset using a range of performance metrics, including hydrograph goodness of fit and flow duration curve signatures. Results showed that gauge-corrected precipitation datasets outperformed uncorrected ones for streamflow simulation. However, CHIRPS, MSWEP, and PISCO showed limitations for streamflow simulation in several catchments draining into the Pacific Ocean and the Amazon River. RAIN4PE provided the best overall performance for streamflow simulation, including flow variability (low, high, and peak flows) and water budget closure. The overall good performance of RAIN4PE as input for hydrological modeling provides a valuable criterion of its applicability for robust countrywide hydrometeorological applications, including hydroclimatic extremes such as droughts and floods. Significance StatementWe developed a novel precipitation dataset RAIN4PE for Peru and Ecuador by merging multisource precipitation data (satellite, reanalysis, and ground-based precipitation) with terrain elevation using the random forest method. Furthermore, RAIN4PE was hydrologically corrected using streamflow data in watersheds with precipitation underestimation through reverse hydrology. The results of a comprehensive hydrological evaluation showed that RAIN4PE outperformed state-of-the-art precipitation datasets such as CHIRP, ERA5, CHIRPS, MSWEP, and PISCO in terms of daily and monthly streamflow simulations, including extremely low and high flows in almost all Peruvian and Ecuadorian catchments. This underlines the suitability of RAIN4PE for hydrometeorological applications in this region. Furthermore, our approach for the generation of RAIN4PE can be used in other data-scarce regions.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Carlos Antonio Fernandez-PalominoORCiD, Fred HattermannORCiDGND, Valentina KrysanovaORCiDGND, Anastasia Lobanova, Fiorella Vega-Jacome, Waldo Lavado, William Santini, Cesar Aybar, Axel BronstertORCiDGND
DOI:https://doi.org/10.1175/JHM-D-20-0285.1
ISSN:1525-755X
ISSN:1525-7541
Title of parent work (English):Journal of hydrometeorology
Subtitle (English):development and hydrological evaluation
Publisher:American Meteorological Soc.
Place of publishing:Boston
Publication type:Article
Language:English
Date of first publication:2022/03/04
Publication year:2022
Release date:2024/06/07
Tag:Amazon region; Complex terrain; Hydrology; Inverse methods; Machine learning; Mountain meteorology; Precipitation; South America; Streamflow; Water budget / balance
Volume:23
Issue:3
Number of pages:28
First page:309
Last Page:336
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.