Oblique rifting: the rule, not the exception

  • Movements of tectonic plates often induce oblique deformation at divergent plate boundaries. This is in striking contrast with traditional conceptual models of rifting and rifted margin formation, which often assume 2-D deformation where the rift velocity is oriented perpendicular to the plate boundary. Here we quantify the validity of this assumption by analysing the kinematics of major continent-scale rift systems in a global plate tectonic reconstruction from the onset of Pangea breakup until the present day. We evaluate rift obliquity by joint examination of relative extension velocity and local rift trend using the script-based plate reconstruction software pyGPlates. Our results show that the global mean rift obliquity since 230 Ma amounts to 34 degrees with a standard deviation of 24 degrees, using the convention that the angle of obliquity is spanned by extension direction and rift trend normal. We find that more than similar to 70 % of all rift segments exceeded an obliquity of 20 degrees demonstrating that oblique riftingMovements of tectonic plates often induce oblique deformation at divergent plate boundaries. This is in striking contrast with traditional conceptual models of rifting and rifted margin formation, which often assume 2-D deformation where the rift velocity is oriented perpendicular to the plate boundary. Here we quantify the validity of this assumption by analysing the kinematics of major continent-scale rift systems in a global plate tectonic reconstruction from the onset of Pangea breakup until the present day. We evaluate rift obliquity by joint examination of relative extension velocity and local rift trend using the script-based plate reconstruction software pyGPlates. Our results show that the global mean rift obliquity since 230 Ma amounts to 34 degrees with a standard deviation of 24 degrees, using the convention that the angle of obliquity is spanned by extension direction and rift trend normal. We find that more than similar to 70 % of all rift segments exceeded an obliquity of 20 degrees demonstrating that oblique rifting should be considered the rule, not the exception. In many cases, rift obliquity and extension velocity increase during rift evolution (e.g. Australia-Antarctica, Gulf of California, South Atlantic, India-Antarctica), which suggests an underlying geodynamic correlation via obliquity-dependent rift strength. Oblique rifting produces 3-D stress and strain fields that cannot be accounted for in simplified 2-D plane strain analysis. We therefore highlight the importance of 3-D approaches in modelling, surveying, and interpretation of most rift segments on Earth where oblique rifting is the dominant mode of deformation.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sascha BruneORCiDGND, Simon E. WilliamsORCiD, R. Dietmar MüllerORCiD
DOI:https://doi.org/10.5194/se-9-1187-2018
ISSN:1869-9510
ISSN:1869-9529
Title of parent work (English):Solid earth
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Date of first publication:2018/10/26
Publication year:2018
Release date:2021/07/26
Volume:9
Issue:5
Number of pages:20
First page:1187
Last Page:1206
Funding institution:German Academic Exchange Service (DAAD)Deutscher Akademischer Austausch Dienst (DAAD) [57319603]; Helmholtz Young Investigators Group CRYSTALS [VH-NG-1132]; Australian Research CouncilAustralian Research Council [IH130200012]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.