• Treffer 5 von 167
Zurück zur Trefferliste

Hadamard-Transform Fluorescence Excitation-Emission-Matrix Spectroscopy

  • We present a fluorescence excitation-emission-matrix spectrometer with superior data acquisition rates over previous instruments. Light from a white light emitting diode (LED) source is dispersed onto a digital micromirror array (DMA) and encoded using binary n-size Walsh functions ("barcodes"). The encoded excitation light is used to irradiate the liquid sample and its fluorescence is dispersed and detected using a conventional array spectrometer. After exposure to excitation light encoded in n different ways, the 2-dimensional excitation-emission-matrix (EEM) spectrum is obtained by inverse Hadamard transformation. Using this technique we examined the kinetics of the fluorescence of rhodamine B as a function of temperature and the acid-driven demetalation of chlorophyll into pheophytin-a. For these experiments, EEM spectra with 31 excitation channels and 2048 emission channels were recorded every 15 s. In total, data from over 3000 EEM spectra were included in this report. It is shown that the increase in data acquisition rate canWe present a fluorescence excitation-emission-matrix spectrometer with superior data acquisition rates over previous instruments. Light from a white light emitting diode (LED) source is dispersed onto a digital micromirror array (DMA) and encoded using binary n-size Walsh functions ("barcodes"). The encoded excitation light is used to irradiate the liquid sample and its fluorescence is dispersed and detected using a conventional array spectrometer. After exposure to excitation light encoded in n different ways, the 2-dimensional excitation-emission-matrix (EEM) spectrum is obtained by inverse Hadamard transformation. Using this technique we examined the kinetics of the fluorescence of rhodamine B as a function of temperature and the acid-driven demetalation of chlorophyll into pheophytin-a. For these experiments, EEM spectra with 31 excitation channels and 2048 emission channels were recorded every 15 s. In total, data from over 3000 EEM spectra were included in this report. It is shown that the increase in data acquisition rate can be as high as [{n(n + 1)}/2]-fold over conventional EEM spectrometers. Spectral acquisition rates of more than two spectra per second were demonstrated.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:N. L. P. Andrews, T. Ferguson, A. M. M. Rangaswamy, A. R. Bernicky, N. Henning, A. Dudelzak, Oliver ReichGND, Jack A. Barnes, Hans-Peter LoockORCiD
DOI:https://doi.org/10.1021/acs.analchem.7b02400
ISSN:0003-2700
ISSN:1520-6882
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/28718629
Titel des übergeordneten Werks (Englisch):Analytical chemistry
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
Erscheinungsjahr:2017
Datum der Freischaltung:20.04.2020
Band:89
Seitenanzahl:11
Erste Seite:8554
Letzte Seite:8564
Fördernde Institution:GasTOPS Ltd.; Natural Sciences and Engineering Research Council of Canada; German Federal State of Brandenburg
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.