Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 6 von 7
Zurück zur Trefferliste

Sustainable cathodes for Lithium-ion energy storage devices based on tannic acid-toward ecofriendly energy storage

  • The use of organic materials with reversible redox activity holds enormous potential for next-generation Li-ion energy storage devices. Yet, most candidates are not truly sustainable, i.e., not derived from renewable feedstock or made in benign reactions. Here an attempt is reported to resolve this issue by synthesizing an organic cathode material from tannic acid and microporous carbon derived from biomass. All constituents, including the redox-active material and conductive carbon additive, are made from renewable resources. Using a simple, sustainable fabrication method, a hybrid material is formed. The low cost and ecofriendly material shows outstanding performance with a capacity of 108 mAh g(-1) at 0.1 A g(-1) and low capacity fading, retaining approximately 80% of the maximum capacity after 90 cycles. With approximately 3.4 V versus Li+/Li, the cells also feature one of the highest reversible redox potentials reported for biomolecular cathodes. Finally, the quinone-catecholate redox mechanism responsible for the high capacityThe use of organic materials with reversible redox activity holds enormous potential for next-generation Li-ion energy storage devices. Yet, most candidates are not truly sustainable, i.e., not derived from renewable feedstock or made in benign reactions. Here an attempt is reported to resolve this issue by synthesizing an organic cathode material from tannic acid and microporous carbon derived from biomass. All constituents, including the redox-active material and conductive carbon additive, are made from renewable resources. Using a simple, sustainable fabrication method, a hybrid material is formed. The low cost and ecofriendly material shows outstanding performance with a capacity of 108 mAh g(-1) at 0.1 A g(-1) and low capacity fading, retaining approximately 80% of the maximum capacity after 90 cycles. With approximately 3.4 V versus Li+/Li, the cells also feature one of the highest reversible redox potentials reported for biomolecular cathodes. Finally, the quinone-catecholate redox mechanism responsible for the high capacity of tannic acid is confirmed by electrochemical characterization of a model compound similar to tannic acid but without catecholic groups.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • zmnr1366.pdfeng
    (2431KB)

    SHA-512bfa06f8f455dfe25d1aac414f32d7399c3db888b545d4f16cfc76826e7ea6528cc0887f5a6406091941599818817b5e53030ff206178872178a1e2f44a114adc

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Ivan K. IlicORCiD, Alexandra Tsouka, Milena PerovicORCiDGND, Jinyeon HwangORCiDGND, Tobias HeilORCiDGND, Felix LöfflerORCiDGND, Martin OschatzORCiDGND, Markus AntoniettiORCiDGND, Clemens LiedelORCiDGND
URN:urn:nbn:de:kobv:517-opus4-570560
DOI:https://doi.org/10.25932/publishup-57056
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1366)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:18.11.2020
Erscheinungsjahr:2020
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:22.03.2024
Freies Schlagwort / Tag:biomass; electrochemistry; energy storage; redox chemistry; sustainability; tannic acid
Ausgabe:1
Aufsatznummer:2000206
Seitenanzahl:10
Quelle:Adv. Sustainable Syst. 2021, 5, 2000206. https://doi.org/10.1002/adsu.202000206
Fördernde Institution:German Research Foundation (DFG)German Research Foundation (DFG) [LI; 2526/4-1]; German Federal Ministry of Education and Research; [BMBF]Federal Ministry of Education & Research (BMBF) [13XP5050A]; Fraunhofer-Max Planck cooperation project [Glyco3Display] the Max Planck; Society; Max Planck Institute of Colloids and Interfaces; Projekt DEAL
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.