• Treffer 7 von 17
Zurück zur Trefferliste

Varying-coefficient models for geospatial transfer learning

  • We study prediction problems in which the conditional distribution of the output given the input varies as a function of task variables which, in our applications, represent space and time. In varying-coefficient models, the coefficients of this conditional are allowed to change smoothly in space and time; the strength of the correlations between neighboring points is determined by the data. This is achieved by placing a Gaussian process (GP) prior on the coefficients. Bayesian inference in varying-coefficient models is generally intractable. We show that with an isotropic GP prior, inference in varying-coefficient models resolves to standard inference for a GP that can be solved efficiently. MAP inference in this model resolves to multitask learning using task and instance kernels. We clarify the relationship between varying-coefficient models and the hierarchical Bayesian multitask model and show that inference for hierarchical Bayesian multitask models can be carried out efficiently using graph-Laplacian kernels. We explore theWe study prediction problems in which the conditional distribution of the output given the input varies as a function of task variables which, in our applications, represent space and time. In varying-coefficient models, the coefficients of this conditional are allowed to change smoothly in space and time; the strength of the correlations between neighboring points is determined by the data. This is achieved by placing a Gaussian process (GP) prior on the coefficients. Bayesian inference in varying-coefficient models is generally intractable. We show that with an isotropic GP prior, inference in varying-coefficient models resolves to standard inference for a GP that can be solved efficiently. MAP inference in this model resolves to multitask learning using task and instance kernels. We clarify the relationship between varying-coefficient models and the hierarchical Bayesian multitask model and show that inference for hierarchical Bayesian multitask models can be carried out efficiently using graph-Laplacian kernels. We explore the model empirically for the problems of predicting rent and real-estate prices, and predicting the ground motion during seismic events. We find that varying-coefficient models with GP priors excel at predicting rents and real-estate prices. The ground-motion model predicts seismic hazards in the State of California more accurately than the previous state of the art.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Matthias Bussas, Christoph Sawade, Nicolas Kuhn, Tobias SchefferORCiD, Niels LandwehrORCiDGND
DOI:https://doi.org/10.1007/s10994-017-5639-3
ISSN:0885-6125
ISSN:1573-0565
Titel des übergeordneten Werks (Englisch):Machine learning
Verlag:Springer
Verlagsort:Dordrecht
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
Erscheinungsjahr:2017
Datum der Freischaltung:20.04.2020
Freies Schlagwort / Tag:Housing-price prediction; Seismic-hazard models; Transfer learning; Varying-coefficient models
Band:106
Seitenanzahl:22
Erste Seite:1419
Letzte Seite:1440
Fördernde Institution:German Research Foundation (DFG) [LA 3270/1-1]
Peer Review:Referiert
Name der Einrichtung zum Zeitpunkt der Publikation:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.