• Treffer 2 von 8
Zurück zur Trefferliste

Disentangling microlensing and differential extinction in the double QSO HE 0512-3329

  • We present the first separate spectra of both components of the small-separation double QSO HE 0512-3329 obtained with HST/STIS in the optical and near UV. The similarities especially of the emission line profiles and redshifts strongly suggest that this system really consists of two lensed images of one and the same source. The emission line flux ratios are assumed to be unaffected by microlensing and are used to study the differential extinction effects caused by the lensing galaxy. Fits of empirical laws show that the extinction properties seem to be different on both lines of sight. With our new results, HE 0512-3329 becomes one of the few extragalactic systems which show the 2175 Å absorption feature, although the detection is only marginal. We then correct the continuum flux ratio for extinction to obtain the differential microlensing signal. Since this may still be significantly affected by variability and time-delay effects, no detailled analysis of the microlensing is possible at the moment. This is the first time thatWe present the first separate spectra of both components of the small-separation double QSO HE 0512-3329 obtained with HST/STIS in the optical and near UV. The similarities especially of the emission line profiles and redshifts strongly suggest that this system really consists of two lensed images of one and the same source. The emission line flux ratios are assumed to be unaffected by microlensing and are used to study the differential extinction effects caused by the lensing galaxy. Fits of empirical laws show that the extinction properties seem to be different on both lines of sight. With our new results, HE 0512-3329 becomes one of the few extragalactic systems which show the 2175 Å absorption feature, although the detection is only marginal. We then correct the continuum flux ratio for extinction to obtain the differential microlensing signal. Since this may still be significantly affected by variability and time-delay effects, no detailled analysis of the microlensing is possible at the moment. This is the first time that differential extinction and microlensing could be separated unambiguously. We show that, at least in HE 0512-3329, both effects contribute significantly to the spectral differences and one cannot be analysed without taking into account the other. For lens modelling purposes, the flux ratios can only be used after correcting for both effects.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Olaf Wucknitz, Lutz WisotzkiORCiDGND, S. Lopez, M. D. Gregg
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2003
Erscheinungsjahr:2003
Datum der Freischaltung:24.03.2017
Quelle:Astronomy and Astrophysics. - 405 (2003), 2, S. 445 - 454
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Name der Einrichtung zum Zeitpunkt der Publikation:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.