• Treffer 5 von 9
Zurück zur Trefferliste

Real-time two- and three-dimensional imaging of monocyte motility and navigation on planar surfaces and in collagen matrices: roles of Rho

  • We recently found that macrophages from RhoA/RhoB double knockout mice had increased motility of the cell body, but severely impaired retraction of the tail and membrane extensions, whereas RhoA-or RhoB-deficient cells exhibited mild phenotypes. Here we extended this work and investigated the roles of Rho signaling in primary human blood monocytes migrating in chemotactic gradients and in various settings. Monocyte velocity, but not chemotactic navigation, was modestly dependent on Rho-ROCK-myosin II signaling on a 2D substrate or in a loose collagen type I matrix. Viewed by time-lapse epi-fluorescence microscopy, monocytes appeared to flutter rather than crawl, such that the 3D surface topology of individual cells was difficult to predict. Spinning disk confocal microscopy and 3D reconstruction revealed that cells move on planar surfaces and in a loose collagen matrix using prominent, curved planar protrusions, which are rapidly remodeled and reoriented, as well as resorbed. In a dense collagen type I matrix, there is insufficientWe recently found that macrophages from RhoA/RhoB double knockout mice had increased motility of the cell body, but severely impaired retraction of the tail and membrane extensions, whereas RhoA-or RhoB-deficient cells exhibited mild phenotypes. Here we extended this work and investigated the roles of Rho signaling in primary human blood monocytes migrating in chemotactic gradients and in various settings. Monocyte velocity, but not chemotactic navigation, was modestly dependent on Rho-ROCK-myosin II signaling on a 2D substrate or in a loose collagen type I matrix. Viewed by time-lapse epi-fluorescence microscopy, monocytes appeared to flutter rather than crawl, such that the 3D surface topology of individual cells was difficult to predict. Spinning disk confocal microscopy and 3D reconstruction revealed that cells move on planar surfaces and in a loose collagen matrix using prominent, curved planar protrusions, which are rapidly remodeled and reoriented, as well as resorbed. In a dense collagen type I matrix, there is insufficient space for this mode and cells adopt a highly Rho-dependent, lobular mode of motility. Thus, in addition to its role in tail retraction on 2D surfaces, Rho is critical for movement in confined spaces, but is largely redundant for motility and chemotaxis in loose matrices.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Robert Bzymek, Markus Horsthemke, Katrin Isfort, Simon Mohr, Kerstin Tjaden, Carsten Mueller-Tidow, Marlies Thomann, Tanja SchwerdtleORCiDGND, Martin Baehler, Albrecht SchwabGND, Peter J. Hanley
DOI:https://doi.org/10.1038/srep25016
ISSN:2045-2322
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/27122054
Titel des übergeordneten Werks (Englisch):Scientific reports
Verlag:Nature Publ. Group
Verlagsort:London
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Erscheinungsjahr:2016
Datum der Freischaltung:22.03.2020
Band:6
Seitenanzahl:15
Fördernde Institution:Deutsche Forschungsgemeinschaft (DFG) [HA 3271/3-1, EXC 1003 (Cluster of Excellence 1003)]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.