• search hit 2 of 2
Back to Result List

Dietary glycemic index and glycemic load, carbohydrate and fiber intake, and measures of insulin sensitivity, secretion, and adiposity in the Insulin Resistance Atherosclerosis Study

  • OBJECTIVE - We studied the association of digestible carbohydrates, fiber intake, glycemic index, and glycemic load with insulin sensitivity (S-I), fasting insulin, acute insulin response (AIR), disposition index, BMI, and waist circumference. RESEARCH DESIGN AND METHODS - Data on 979 adults with normal (67%) and impaired (33%) glucose tolerance from the Insulin Resistance Atherosclerosis Study (1992-1994) were analyzed. Usual dietary intake was assessed via a 114- item interviewer-administered food frequency questionnaire from which nutrient intakes were estimated. Published glycemic index values were assigned to food items and average dietary glycemic index and glycemic load calculated per subject. S-I and AIR were determined by frequently sampled intravenous glucose tolerance test. Disposition index was calculated by multiplying S-I with AIR. Multiple linear regression modeling was employed. RESULTS - No association was observed between glycemic index and S-I fasting insulin, AIR, disposition index, BMI, or waist circumferenceOBJECTIVE - We studied the association of digestible carbohydrates, fiber intake, glycemic index, and glycemic load with insulin sensitivity (S-I), fasting insulin, acute insulin response (AIR), disposition index, BMI, and waist circumference. RESEARCH DESIGN AND METHODS - Data on 979 adults with normal (67%) and impaired (33%) glucose tolerance from the Insulin Resistance Atherosclerosis Study (1992-1994) were analyzed. Usual dietary intake was assessed via a 114- item interviewer-administered food frequency questionnaire from which nutrient intakes were estimated. Published glycemic index values were assigned to food items and average dietary glycemic index and glycemic load calculated per subject. S-I and AIR were determined by frequently sampled intravenous glucose tolerance test. Disposition index was calculated by multiplying S-I with AIR. Multiple linear regression modeling was employed. RESULTS - No association was observed between glycemic index and S-I fasting insulin, AIR, disposition index, BMI, or waist circumference after adjustment for demographic characteristics or family history of diabetes, energy expenditure, and smoking. Associations observed for digestible carbohydrates and glycemic load, respectively, with S-I insulin secretion, and adiposity (adjusted for demographics and main confounders) were entirely explained by energy intake. In contrast, fiber was associated positively with S-I and disposition index and inversely with fasting insulin, BMI, and waist circumference but not with AIR. CONCLUSION - Carbohydrates as reflected in glycemic index and glycemic load may not be related to measures of insulin sensitivity, insulin secretion, and adiposity. Fiber intake may not only have beneficial effects. on insulin sensitivity and adiposity, but also on pancreatic functionalityshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:A. D. Liese, M. Schulz, F. Fang, T. M. S. Wolever, R. B. D'Agostino, K. C. Sparks, E. J. Mayer-Davis
ISSN:0149-5992
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Diabetes Care. - ISSN 0149-5992. - 28 (2005), 12, S. 2832 - 2838
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.