Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 3 von 13
Zurück zur Trefferliste

Stochastic relational processes efficient inference and applications

  • One of the goals of artificial intelligence is to develop agents that learn and act in complex environments. Realistic environments typically feature a variable number of objects, relations amongst them, and non-deterministic transition behavior. While standard probabilistic sequence models provide efficient inference and learning techniques for sequential data, they typically cannot fully capture the relational complexity. On the other hand, statistical relational learning techniques are often too inefficient to cope with complex sequential data. In this paper, we introduce a simple model that occupies an intermediate position in this expressiveness/efficiency trade-off. It is based on CP-logic (Causal Probabilistic Logic), an expressive probabilistic logic for modeling causality. However, by specializing CP-logic to represent a probability distribution over sequences of relational state descriptions and employing a Markov assumption, inference and learning become more tractable and effective. Specifically, we show how to solve partOne of the goals of artificial intelligence is to develop agents that learn and act in complex environments. Realistic environments typically feature a variable number of objects, relations amongst them, and non-deterministic transition behavior. While standard probabilistic sequence models provide efficient inference and learning techniques for sequential data, they typically cannot fully capture the relational complexity. On the other hand, statistical relational learning techniques are often too inefficient to cope with complex sequential data. In this paper, we introduce a simple model that occupies an intermediate position in this expressiveness/efficiency trade-off. It is based on CP-logic (Causal Probabilistic Logic), an expressive probabilistic logic for modeling causality. However, by specializing CP-logic to represent a probability distribution over sequences of relational state descriptions and employing a Markov assumption, inference and learning become more tractable and effective. Specifically, we show how to solve part of the inference and learning problems directly at the first-order level, while transforming the remaining part into the problem of computing all satisfying assignments for a Boolean formula in a binary decision diagram. We experimentally validate that the resulting technique is able to handle probabilistic relational domains with a substantial number of objects and relations.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Ingo Thon, Niels LandwehrORCiDGND, Luc De Raedt
DOI:https://doi.org/10.1007/s10994-010-5213-8
ISSN:0885-6125
Titel des übergeordneten Werks (Englisch):Machine learning
Verlag:Springer
Verlagsort:Dordrecht
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2011
Erscheinungsjahr:2011
Datum der Freischaltung:26.03.2017
Freies Schlagwort / Tag:CP-Logic; Markov processes; Statistical relational learning; Stochastic relational process; Time series
Band:82
Ausgabe:2
Seitenanzahl:34
Erste Seite:239
Letzte Seite:272
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik und Computational Science
Peer Review:Referiert
Name der Einrichtung zum Zeitpunkt der Publikation:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.