• search hit 5 of 17
Back to Result List

Effects of drop height and surface instability on neuromuscular activation during drop jumps

  • The purpose of this study was to examine whether drop height-induced changes in leg muscle activity during drop jumps (DJ) are additionally modulated by surface condition. Twenty-four healthy participants (23.7 +/- 1.8years) performed DJs on a force plate on stable, unstable, and highly unstable surfaces using different drop heights (i.e., 20cm, 40cm, 60cm). Electromyographic (EMG) activity of soleus (SOL), gastrocnemius (GM), tibialis anterior (TA) muscles and coactivation of TA/SOL and TA/GM were analyzed for time intervals 100ms prior to ground contact (preactivation) and 30-60ms after ground contact [short latency response (SLR)]. Increasing drop heights resulted in progressively increased SOL and GM activity during preactivation and SLR (P<0.01; 1.01 d 5.34) while TA/SOL coactivation decreased (P<0.05; 0.51 d 3.01). Increasing surface instability produced decreased activities during preactivation (GM) and SLR (GM, SOL) (P<0.05; 1.36 d 4.30). Coactivation increased during SLR (P<0.05; 1.50 d 2.58). A significant dropThe purpose of this study was to examine whether drop height-induced changes in leg muscle activity during drop jumps (DJ) are additionally modulated by surface condition. Twenty-four healthy participants (23.7 +/- 1.8years) performed DJs on a force plate on stable, unstable, and highly unstable surfaces using different drop heights (i.e., 20cm, 40cm, 60cm). Electromyographic (EMG) activity of soleus (SOL), gastrocnemius (GM), tibialis anterior (TA) muscles and coactivation of TA/SOL and TA/GM were analyzed for time intervals 100ms prior to ground contact (preactivation) and 30-60ms after ground contact [short latency response (SLR)]. Increasing drop heights resulted in progressively increased SOL and GM activity during preactivation and SLR (P<0.01; 1.01 d 5.34) while TA/SOL coactivation decreased (P<0.05; 0.51 d 3.01). Increasing surface instability produced decreased activities during preactivation (GM) and SLR (GM, SOL) (P<0.05; 1.36 d 4.30). Coactivation increased during SLR (P<0.05; 1.50 d 2.58). A significant drop heightxsurface interaction was observed for SOL during SLR. Lower SOL activity was found on unstable compared to stable surfaces for drop heights 40cm (P<0.05; 1.25 d 2.12). Findings revealed that instability-related changes in activity of selected leg muscles are minimally affected by drop height.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Melanie LesinskiORCiDGND, Olaf PrieskeORCiDGND, Rainer Beurskens, David George BehmORCiDGND, Urs GranacherORCiDGND
DOI:https://doi.org/10.1111/sms.12732
ISSN:0905-7188
ISSN:1600-0838
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/27460831
Title of parent work (English):Scandinavian journal of medicine & science in sports
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:EMG; Stretch-shortening cycle; preactivation; short latency response
Volume:27
Number of pages:9
First page:1090
Last Page:1098
Organizational units:Humanwissenschaftliche Fakultät / Strukturbereich Kognitionswissenschaften / Department Sport- und Gesundheitswissenschaften
Peer review:Referiert
Institution name at the time of the publication:Humanwissenschaftliche Fakultät / Institut für Sportmedizin und Prävention
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.