• search hit 3 of 6
Back to Result List

Physical Gelation of alpha-Helical Copolypeptides

  • Owing to its rod-like alpha-helical secondary structure, the synthetic polypeptide poly(gamma-benzyl-L-glutamate) (PBLG) can form physical and thermoreversible gels in helicogenic solvents such as toluene. The versatility of PBLG can be increased by introducing functionalizable comonomers, such as allylglycine (AG). In this work we examined the secondary structure of PBLG and a series of statistical poly(gamma-benzyl-L-glutamate-co-allylglycine) copolypeptides, varying in composition and chain length, by circular dichroism (CD), Fourier-transform infrared (FTIR) and Raman spectroscopy, and wide-angle X-ray scattering (WAXS). The secondary structure of PBLG and the copolypeptides presented dissimilarities that increased with increasing AG molar fraction, especially when racemic AG units were incorporated. The physical gelation behavior of these copolypeptides was analyzed by temperature-sweep H-1 NMR and rheological measurements. The study revealed that both copolypeptide composition and chain length affected secondary structure,Owing to its rod-like alpha-helical secondary structure, the synthetic polypeptide poly(gamma-benzyl-L-glutamate) (PBLG) can form physical and thermoreversible gels in helicogenic solvents such as toluene. The versatility of PBLG can be increased by introducing functionalizable comonomers, such as allylglycine (AG). In this work we examined the secondary structure of PBLG and a series of statistical poly(gamma-benzyl-L-glutamate-co-allylglycine) copolypeptides, varying in composition and chain length, by circular dichroism (CD), Fourier-transform infrared (FTIR) and Raman spectroscopy, and wide-angle X-ray scattering (WAXS). The secondary structure of PBLG and the copolypeptides presented dissimilarities that increased with increasing AG molar fraction, especially when racemic AG units were incorporated. The physical gelation behavior of these copolypeptides was analyzed by temperature-sweep H-1 NMR and rheological measurements. The study revealed that both copolypeptide composition and chain length affected secondary structure, gelation temperature, and gel stiffness.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Charlotte D. Vacogne, Michael Schopferer, Helmut SchlaadORCiDGND
DOI:https://doi.org/10.1021/acs.biomac.6b00427
ISSN:1525-7797
ISSN:1526-4602
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/27233111
Title of parent work (English):Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Volume:17
Number of pages:8
First page:2384
Last Page:2391
Funding institution:International Max Planck Research School (IMPRS) on "Multiscale Biosystems"
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.