• search hit 2 of 2
Back to Result List

Cardiorespiratory Synchronization

  • The complex behaviour of cardiorespiratory dynamics is shown to be related to the interaction between several physiological oscillators. This study is based on electrocardiogram and respiratory flow data obtained from 3 different subjects during paced breathing at 10 different pacing cycle lengths ranging from 5 s to 12 s. Two different methods ideally suited for the analysis of synchronization pattern of coupled oscillators are applied: 1. Symbolic dynamics based on symbol coding adapted for the detection of respiratory modulation of cardiac parasympathetic activity discloses two regimes of different synchronization behaviour within the frequency area corresponding to the Arnold tongue of 1:1 frequency-locking between respiratory flow and respiratory heartbeat variation (respiratory sinus arrhythmia). 2. The analysis of the phase shift between respiratory flow and respiratory sinus arrhythmia indicates that synchronization is not a static but a dynamic phenomenon. The observed dependence of the phase shift on respiratory cycle lengthThe complex behaviour of cardiorespiratory dynamics is shown to be related to the interaction between several physiological oscillators. This study is based on electrocardiogram and respiratory flow data obtained from 3 different subjects during paced breathing at 10 different pacing cycle lengths ranging from 5 s to 12 s. Two different methods ideally suited for the analysis of synchronization pattern of coupled oscillators are applied: 1. Symbolic dynamics based on symbol coding adapted for the detection of respiratory modulation of cardiac parasympathetic activity discloses two regimes of different synchronization behaviour within the frequency area corresponding to the Arnold tongue of 1:1 frequency-locking between respiratory flow and respiratory heartbeat variation (respiratory sinus arrhythmia). 2. The analysis of the phase shift between respiratory flow and respiratory sinus arrhythmia indicates that synchronization is not a static but a dynamic phenomenon. The observed dependence of the phase shift on respiratory cycle length shows large inter-individual variation. These findings turn out to be further hints for the existence of an additional central oscillator in the frequency range of respiration interacting with the central respiratory oscillator driving mechanical respiration.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Michael Schiek, Friedhelm R. Drepper, Ralf EngbertORCiDGND, Katrin Suder, Hans-Henning Abel
ISBN:3-540-63481-9
Publication type:Article
Language:English
Year of first publication:1998
Publication year:1998
Release date:2017/03/24
Source:Nonlinear analysis of physiological data / Hrsg.: Holger Kantz ; Jürgen Kurths ; Gottfried Mayer-Kress. - Berlin : Springer, 1998. - ISBN: 3-540-63481-9. - S. 191 - 209
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.