• search hit 3 of 14
Back to Result List

Improving the selectivity for the synthesis of two renewable platform chemicals via olefin metathesis

  • The self-metathesis of methyl 10-undecenoate as well as its cross-metathesis with methyl acrylate was investigated in detail by a systematic variation of the reaction conditions. Unsaturated ;,;-diesters with a chain length of 20 and 12 carbon atoms were thus obtained, respectively. Four different metathesis catalysts were investigated under solvent-free conditions at catalyst loadings ranging from 0.05 mol% to 1 mol% and at temperatures ranging from 30 °C to 90 °C. In the case of the self-metathesis reactions quantitative conversions were obtained with all catalysts, but the second generation metathesis catalysts revealed high amounts of olefin isomerization side reactions at higher temperatures. Using a small quantity of the hydrogen acceptor 1,4-benzoquinone, the isomerization process was almost completely suppressed. Thus, the second generation catalysts allowed for high conversions at very low catalyst loadings. For the cross-metathesis reaction, an interesting temperature and catalyst loading dependent selectivity was observedThe self-metathesis of methyl 10-undecenoate as well as its cross-metathesis with methyl acrylate was investigated in detail by a systematic variation of the reaction conditions. Unsaturated ;,;-diesters with a chain length of 20 and 12 carbon atoms were thus obtained, respectively. Four different metathesis catalysts were investigated under solvent-free conditions at catalyst loadings ranging from 0.05 mol% to 1 mol% and at temperatures ranging from 30 °C to 90 °C. In the case of the self-metathesis reactions quantitative conversions were obtained with all catalysts, but the second generation metathesis catalysts revealed high amounts of olefin isomerization side reactions at higher temperatures. Using a small quantity of the hydrogen acceptor 1,4-benzoquinone, the isomerization process was almost completely suppressed. Thus, the second generation catalysts allowed for high conversions at very low catalyst loadings. For the cross-metathesis reaction, an interesting temperature and catalyst loading dependent selectivity was observed with the second generation catalysts. Moreover, due to these optimizations, we were able to run these cross-metathesis reactions with a 1:1 ratio of the reactants and low catalysts loadings. This is an improvement over described literature procedures. Thus, we report on the detailed investigation of the described self- and cross- metathesis reactions leading to practical and optimized reaction conditions for the synthesis of unsaturated ;,;-diesters monomers from renewable raw materials in an efficient catalytic manner.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Guy Bertrand Djigoué, Michael A. R. Meier
URL:http://www.sciencedirect.com/science/journal/0926860X
DOI:https://doi.org/10.1016/j.apcata.2009.08.025
ISSN:0926-860X
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Applied Catalysis / A : General. - ISSN 0926-860X. - 368 (2009), 1-2, S. 158 - 162
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.