The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 202
Back to Result List

Unexpected walking perturbations: Reliability and validity of a new treadmill protocol to provoke muscular reflex activities at lower extremities and the trunk

  • Instrumented treadmills offer the potential to generate standardized walking perturbations, which are particularly rapid and powerful. However, technical requirements to release adequate perturbations regarding timing, duration and amplitude are demanding. This study investigated the test-retest reliability and validity of a new treadmill perturbation protocol releasing rapid and unexpected belt perturbations to provoke muscular reflex responses at lower extremities and the trunk. Fourteen healthy participants underwent two identical treadmill walking protocols, consisting of 10 superimposed one-sided belt perturbations (100 ms duration; 2 m/s amplitude), triggered by a plantar pressure insole 200 ms after heel contact. Delay, duration and amplitude of applied perturbations were recorded by 3D-motion capture. Muscular reflex responses (within 200 ms) were measured at lower extremities and the trunk (10-lead EMG). Data was analyzed descriptively (mean +/- SD). Reliability was analyzed using test-retest variability (TRV%) and limits ofInstrumented treadmills offer the potential to generate standardized walking perturbations, which are particularly rapid and powerful. However, technical requirements to release adequate perturbations regarding timing, duration and amplitude are demanding. This study investigated the test-retest reliability and validity of a new treadmill perturbation protocol releasing rapid and unexpected belt perturbations to provoke muscular reflex responses at lower extremities and the trunk. Fourteen healthy participants underwent two identical treadmill walking protocols, consisting of 10 superimposed one-sided belt perturbations (100 ms duration; 2 m/s amplitude), triggered by a plantar pressure insole 200 ms after heel contact. Delay, duration and amplitude of applied perturbations were recorded by 3D-motion capture. Muscular reflex responses (within 200 ms) were measured at lower extremities and the trunk (10-lead EMG). Data was analyzed descriptively (mean +/- SD). Reliability was analyzed using test-retest variability (TRV%) and limits of agreement (LoA, bias +/- 1.96*SD). Perturbation delay was 202 14 ms, duration was 102 +/- 4 ms and amplitude was 2.1 +/- 0.01 m/s. TRV for perturbation delay, duration and amplitude ranged from 5.0% to 5.7%. LoA reached 3 +/- 36 ms for delay, 2 +/- 13 ms for duration and 0.0 +/- 0.3 m/s for amplitude. EMG amplitudes following perturbations ranged between 106 +/- 97% and 909 +/- 979% of unperturbed gait and EMG latencies between 82 +/- 14 ms and 106 +/- 16 ms. Minor differences between preset and observed perturbation characteristics and results of test-retest analysis prove a high validity with excellent reliability of the setup. Therefore, the protocol tested can be recommended to provoke muscular reflex responses at lower extremities and the trunk in perturbed walking. (C) 2017 Elsevier Ltd. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Tilman EngelORCiDGND, Juliane MuellerORCiDGND, Stephan KopinskiGND, Antje Reschke, Steffen MuellerGND, Frank MayerORCiDGND
DOI:https://doi.org/10.1016/j.jbiomech.2017.02.026
ISSN:0021-9290
ISSN:1873-2380
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/28320506
Title of parent work (English):Journal of biomechanics
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:Gait; MiSpEx; Perturbation; Reliability; Stumbling; Treadmill
Volume:55
Number of pages:4
First page:152
Last Page:155
Funding institution:MiSpEx - the National Research Network for Medicine in Spine Exercise [BISp IIA1-080102A/11-14]; European Union (ERDF European Regional Development Fund); German Federal Institute of Sport Science
Organizational units:Humanwissenschaftliche Fakultät / Strukturbereich Kognitionswissenschaften / Department Sport- und Gesundheitswissenschaften
Peer review:Referiert
Institution name at the time of the publication:Humanwissenschaftliche Fakultät / Institut für Sportmedizin und Prävention
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.