• Treffer 96 von 217
Zurück zur Trefferliste

Thermally-induced actuation of magnetic nanocomposites based on Oligo(ω-pentadecalactone) and covalently integrated magnetic nanoparticles

  • The incorporation of inorganic particles in a polymer matrix has been established as a method to adjust the mechanical performance of composite materials. We report on the influence of covalent integration of magnetic nanoparticles (MNP) on the actuation behavior and mechanical performance of hybrid nanocomposite (H-NC) based shape-memory polymer actuators (SMPA). The H-NC were synthesized by reacting two types of oligo(ω-pentadecalactone) (OPDL) based precursors with terminal hydroxy groups, a three arm OPDL (3 AOPDL, Mn = 6000 g mol•1−1 ) and an OPDL (Mn =3300 g • mol−1 ) coated magnetite nanoparticle (Ø = 10 ± 2 nm), with a diisocyanate. These H-NC were compared to the homopolymer network regarding the actuation performance, contractual stress (σcontr) as well as thermal and mechanical properties. The melting range of the OPDL crystals (ΔTm,OPDL) was shifted in homo polymer networks from 36 ºC − 76 ºC to 41ºC − 81 °C for H-NC with 9 wt% of MNP content. The actuators were explored by variation of separating temperature (Tsep), whichThe incorporation of inorganic particles in a polymer matrix has been established as a method to adjust the mechanical performance of composite materials. We report on the influence of covalent integration of magnetic nanoparticles (MNP) on the actuation behavior and mechanical performance of hybrid nanocomposite (H-NC) based shape-memory polymer actuators (SMPA). The H-NC were synthesized by reacting two types of oligo(ω-pentadecalactone) (OPDL) based precursors with terminal hydroxy groups, a three arm OPDL (3 AOPDL, Mn = 6000 g mol•1−1 ) and an OPDL (Mn =3300 g • mol−1 ) coated magnetite nanoparticle (Ø = 10 ± 2 nm), with a diisocyanate. These H-NC were compared to the homopolymer network regarding the actuation performance, contractual stress (σcontr) as well as thermal and mechanical properties. The melting range of the OPDL crystals (ΔTm,OPDL) was shifted in homo polymer networks from 36 ºC − 76 ºC to 41ºC − 81 °C for H-NC with 9 wt% of MNP content. The actuators were explored by variation of separating temperature (Tsep), which splits the OPDL crystalline domain into actuating and geometry determining segments. Tsep was varied in the melting range of the nanocomposites and the actuation capability and contractual stress (σcontr) of the nanocomposite actuators could be adjusted. The reversible strain (εrev) was decreased from 11 ± 0.3% for homo polymer network to 3.2±0.3% for H-NC9 with 9 wt% of MNP indicating a restraining effect of the MNP on chain mobility. The results show that the performance of H-NCs in terms of thermal and elastic properties can be tailored by MNP content, however for higher reversible actuation, lower MNP contents are preferable.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Muhammad Yasar RazzaqORCiDGND, Marc BehlORCiDGND, Andreas LendleinORCiDGND
DOI:https://doi.org/10.1557/adv.2018.613
ISSN:2059-8521
Titel des übergeordneten Werks (Englisch):MRS advances: a journal of the Materials Research Society (MRS)
Verlag:Cambridge University Press
Verlagsort:New York
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:15.11.2018
Erscheinungsjahr:2018
Datum der Freischaltung:23.02.2022
Band:3
Ausgabe:63
Seitenanzahl:9
Erste Seite:3783
Letzte Seite:3791
Fördernde Institution:Helmholtz-Association through programme-oriented funding
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.