• search hit 3 of 9
Back to Result List

Perfluorophenyl azide functionalization of electrospun poly(para-dioxanone)

  • Strategies to surface-functionalize scaffolds by covalent binding of biologically active compounds are of fundamental interest to control the interactions between scaffolds and biomolecules or cells. Poly(para-dioxanone) (PPDO) is a clinically established polymer that has shown potential as temporary implant, eg, for the reconstruction of the inferior vena cava, as a nonwoven fiber mesh. However, PPDO lacks suitable chemical groups for covalent functionalization. Furthermore, PPDO is highly sensitive to hydrolysis, reflected by short in vivo half-life times and degradation during storage. Establishing a method for covalent functionalization without degradation of this hydrolyzable polymer is therefore important to enable the surface tailoring for tissue engineering applications. It was hypothesized that treatment of PPDO with an N-hydroxysuccinimide ester group bearing perfluorophenyl azide (PFPA) under UV irradiation would allow efficient surface functionalization of the scaffold. X-ray photoelectron spectroscopy and attenuated totalStrategies to surface-functionalize scaffolds by covalent binding of biologically active compounds are of fundamental interest to control the interactions between scaffolds and biomolecules or cells. Poly(para-dioxanone) (PPDO) is a clinically established polymer that has shown potential as temporary implant, eg, for the reconstruction of the inferior vena cava, as a nonwoven fiber mesh. However, PPDO lacks suitable chemical groups for covalent functionalization. Furthermore, PPDO is highly sensitive to hydrolysis, reflected by short in vivo half-life times and degradation during storage. Establishing a method for covalent functionalization without degradation of this hydrolyzable polymer is therefore important to enable the surface tailoring for tissue engineering applications. It was hypothesized that treatment of PPDO with an N-hydroxysuccinimide ester group bearing perfluorophenyl azide (PFPA) under UV irradiation would allow efficient surface functionalization of the scaffold. X-ray photoelectron spectroscopy and attenuated total reflectance Fourier-transformed infrared spectroscopy investigation revealed the successful binding, while a gel permeation chromatography study showed that degradation did not occur under these conditions. Coupling of a rhodamine dye to the N-hydroxysuccinimide esters on the surface of a PFPA-functionalized scaffold via its amine linker showed a homogenous staining of the PPDO in laser confocal microscopy. The PFPA method is therefore applicable even to the surface functionalization of hydrolytically labile polymers, and it was demonstrated that PFPA chemistry may serve as a versatile tool for the (bio-)functionalization of PPDO scaffolds.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Karola LützowGND, Paul J. Hommes-Schattmann, Axel T. NeffeORCiDGND, Bilal Ahmad, Gareth R. WilliamsORCiD, Andreas LendleinORCiDGND
DOI:https://doi.org/10.1002/pat.4331
ISSN:1042-7147
ISSN:1099-1581
Title of parent work (English):Polymers for advanced technologies
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Date of first publication:2018/05/25
Publication year:2018
Release date:2021/03/01
Tag:biological applications of polymers; fibers; functionalization of polymers; microstructure
Volume:30
Issue:5
Number of pages:8
First page:1165
Last Page:1172
Funding institution:Helmholtz AssociationHelmholtz Association; European UnionEuropean Union (EU) [604049]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.