• Treffer 10 von 11
Zurück zur Trefferliste

Characteristics of polythiophene surface light emitting diodes

  • Surface light emitting diodes SLEDs , in which previously microfabricated electrodes were coated with a conjugated polymer, were made with greatly different electrode spacings 250 nm and 10 or 20 mm and with different electrode material combinations. The fabrication process allowed us to compare several electrode materials. The SLED structures also enabled imaging of the light emission zone with fluorescence video microscopy. Conventional sandwich structures were also made for comparison electrode separation 50 nm. In this study, the emitting layer was poly[3- (2',5'-bis(1'',4'',7''trioxaoctyl)phenyl)-2,2'-bithiophene] (EO-PT), a conjugated polymer based on polythiophene with oligo ethyleneoxide side chains. The current-voltage (I(V)) and light-voltage (L(V)) characteristics of the SLEDs were largely insensitive to electrode separation except at high voltages, at which the current in the devices with the largest separations was limited. Sandwich structures had the same light output at a given current. Light could be obtained inSurface light emitting diodes SLEDs , in which previously microfabricated electrodes were coated with a conjugated polymer, were made with greatly different electrode spacings 250 nm and 10 or 20 mm and with different electrode material combinations. The fabrication process allowed us to compare several electrode materials. The SLED structures also enabled imaging of the light emission zone with fluorescence video microscopy. Conventional sandwich structures were also made for comparison electrode separation 50 nm. In this study, the emitting layer was poly[3- (2',5'-bis(1'',4'',7''trioxaoctyl)phenyl)-2,2'-bithiophene] (EO-PT), a conjugated polymer based on polythiophene with oligo ethyleneoxide side chains. The current-voltage (I(V)) and light-voltage (L(V)) characteristics of the SLEDs were largely insensitive to electrode separation except at high voltages, at which the current in the devices with the largest separations was limited. Sandwich structures had the same light output at a given current. Light could be obtained in forward and reverse bias from indium tin oxide ITO -aluminum, gold silicide-aluminum, and gold silicide-gold SLEDs, but the turn-on voltages were lowest with the ITO-aluminum devices, and these were also the brightest and most reliable. Adding salt to the EO-PT increased the current and brightness, decreased the turn-on voltages, and made the I(V) characteristics symmetric; thus, a device with an electrode separation of 10 mm had the extraordinarily low turn-on voltage of 6 V. The location of the light emission was at the electron-injecting contact.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Yvette Kaminorz, Elisabeth Smela, Tomas Johansson, Ludwig BrehmerGND, Mats R. Andersson, Olle Inganäs
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2000
Erscheinungsjahr:2000
Datum der Freischaltung:24.03.2017
Quelle:Synthetic Metals. - 113 (2000), S. 103 - 114
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Name der Einrichtung zum Zeitpunkt der Publikation:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.