• Treffer 1 von 2
Zurück zur Trefferliste

Reprogrammable, magnetically controlled polymeric nanocomposite actuators

  • Soft robots and devices with the advanced capability to perform adaptive motions similar to that of human beings often have stimuli-sensitive polymeric materials as the key actuating component. The external signals triggering the smart polymers’ actuations can be transmitted either via a direct physical connection between actuator and controlling unit (tethered) or remotely without a connecting wire. However, the vast majority of such polymeric actuator materials are limited to one specific type of motion as their geometrical information is chemically fixed. Here, we present magnetically driven nanocomposite actuators, which can be reversibly reprogrammed to different actuation geometries by a solely physical procedure. Our approach is based on nanocomposite materials comprising spatially segregated crystallizable actuation and geometry determining units. Upon exposure to a specific magnetic field strength the actuators’ geometric memory is erased by the melting of the geometry determining units allowing the implementation of a newSoft robots and devices with the advanced capability to perform adaptive motions similar to that of human beings often have stimuli-sensitive polymeric materials as the key actuating component. The external signals triggering the smart polymers’ actuations can be transmitted either via a direct physical connection between actuator and controlling unit (tethered) or remotely without a connecting wire. However, the vast majority of such polymeric actuator materials are limited to one specific type of motion as their geometrical information is chemically fixed. Here, we present magnetically driven nanocomposite actuators, which can be reversibly reprogrammed to different actuation geometries by a solely physical procedure. Our approach is based on nanocomposite materials comprising spatially segregated crystallizable actuation and geometry determining units. Upon exposure to a specific magnetic field strength the actuators’ geometric memory is erased by the melting of the geometry determining units allowing the implementation of a new actuator shape. The actuation performance of the nanocomposites can be tuned and the technical significance was demonstrated in a multi-cyclic experiment with several hundreds of repetitive free-standing shape shifts without losing performance.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Li WangORCiDGND, Muhammad Yasar RazzaqORCiDGND, Tobias RudolphORCiD, Matthias HeuchelORCiDGND, Ulrich NöchelGND, Ulrich MansfeldGND, Yi Jiang, Oliver E. C. GouldORCiD, Marc BehlORCiDGND, Karl KratzORCiD, Andreas LendleinORCiDGND
DOI:https://doi.org/10.1039/c8mh00266e
ISSN:2051-6347
ISSN:2051-6355
Titel des übergeordneten Werks (Englisch):Material horizons
Verlag:Royal Society of Chemistry
Verlagsort:Cambridge
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:21.06.2018
Erscheinungsjahr:2018
Datum der Freischaltung:08.10.2021
Band:5
Ausgabe:5
Seitenanzahl:7
Erste Seite:861
Letzte Seite:867
Fördernde Institution:Helmholtz-AssociationHelmholtz Association; China Scholarship Council (CSC)China Scholarship Council [2010624124]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.