• Treffer 8 von 20
Zurück zur Trefferliste

Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells

  • Manganese (Mn) is an essential trace element, but overexposure is associated with toxicity and neurological dysfunction. Accumulation of Mn can be observed in dopamine-rich regions of the brain in vivo and Mn-induced oxidative stress has been discussed extensively. Nevertheless, Mn-induced DNA damage, adverse effects of DNA repair, and possible resulting consequences for the neurite network are not yet characterized. For this, LUHMES cells were used, as they differentiate into dopaminergic-like neurons and form extensive neurite networks. Experiments were conducted to analyze Mn bioavailability and cytotoxicity of MnCl2, indicating a dose-dependent uptake and substantial cytotoxic effects. DNA damage, analyzed by means of 8-oxo-7,8-dihydro-2'-guanine (8oxodG) and single DNA strand break formation, showed significant dose- and time-dependent increase of DNA damage upon 48 h Mn exposure. Furthermore, the DNA damage response was increased which was assessed by analytical quantification of poly(ADP-ribosyl)ation (PARylation). GeneManganese (Mn) is an essential trace element, but overexposure is associated with toxicity and neurological dysfunction. Accumulation of Mn can be observed in dopamine-rich regions of the brain in vivo and Mn-induced oxidative stress has been discussed extensively. Nevertheless, Mn-induced DNA damage, adverse effects of DNA repair, and possible resulting consequences for the neurite network are not yet characterized. For this, LUHMES cells were used, as they differentiate into dopaminergic-like neurons and form extensive neurite networks. Experiments were conducted to analyze Mn bioavailability and cytotoxicity of MnCl2, indicating a dose-dependent uptake and substantial cytotoxic effects. DNA damage, analyzed by means of 8-oxo-7,8-dihydro-2'-guanine (8oxodG) and single DNA strand break formation, showed significant dose- and time-dependent increase of DNA damage upon 48 h Mn exposure. Furthermore, the DNA damage response was increased which was assessed by analytical quantification of poly(ADP-ribosyl)ation (PARylation). Gene expression of the respective DNA repair genes was not significantly affected. Degradation of the neuronal network is significantly altered by 48 h Mn exposure. Altogether, this study contributes to the characterization of Mn-induced neurotoxicity, by analyzing the adverse effects of Mn on genome integrity in dopaminergic-like neurons and respective outcomes.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Merle Marie NicolaiORCiDGND, Barbara WittORCiDGND, Sharleen FrieseORCiD, Vivien MichaelisORCiDGND, Lisa Hölz-Armstrong, Maximilian MartinORCiD, Franziska EbertORCiD, Tanja SchwerdtleORCiDGND, Julia BornhorstORCiDGND
DOI:https://doi.org/10.1016/j.fct.2022.112822
ISSN:0278-6915
ISSN:1873-6351
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/35063473
Titel des übergeordneten Werks (Englisch):Food and chemical toxicology
Verlag:Elsevier
Verlagsort:Oxford
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:19.01.2022
Erscheinungsjahr:2022
Datum der Freischaltung:28.02.2024
Freies Schlagwort / Tag:DNA integrity; DNA repair; Dopaminergic neurons; Genotoxicity; Manganese; Neurodegeneration; Oxidative stress
Band:161
Aufsatznummer:112822
Seitenanzahl:10
Fördernde Institution:DFG Research Unit TraceAge [FOR 2558, BO4103/42]; DFG [BO4103/2-1]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
DDC-Klassifikation:6 Technik, Medizin, angewandte Wissenschaften / 64 Hauswirtschaft und Familie / 641 Essen und Trinken
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.