• Treffer 13 von 15
Zurück zur Trefferliste

Strong geometric-phase effects in the hydrogen-exchange reaction at high collision energies : II. quasiclassical trajectory analysis

  • Recent calculations on the hydrogen-exchange reaction [Bouakline et al., J. Chem. Phys. 128, 124322 (2008)], have found strong geometric phase (GP) effects in the state-to-state differential cross-sections (DCS), at energies above the energetic minimum of the conical intersection (CI) seam, which cancel out in the integral cross-sections (ICS). In this article, we explain the origin of this cancellation and make other predictions about the nature of the reaction mechanisms at these high energies by carrying out quasiclassical trajectory (QCT) calculations. Detailed comparisons are made with the quantum results by splitting the quantum and the QCT cross-sections into contributions from reaction paths that wind in different senses around the CI and that scatter the products in the nearside and farside directions. Reaction paths that traverse one transition state (1-TS) scatter their products in just the nearside direction, whereas paths that traverse two transition states (2-TS) scatter in both the nearside and farside directions.Recent calculations on the hydrogen-exchange reaction [Bouakline et al., J. Chem. Phys. 128, 124322 (2008)], have found strong geometric phase (GP) effects in the state-to-state differential cross-sections (DCS), at energies above the energetic minimum of the conical intersection (CI) seam, which cancel out in the integral cross-sections (ICS). In this article, we explain the origin of this cancellation and make other predictions about the nature of the reaction mechanisms at these high energies by carrying out quasiclassical trajectory (QCT) calculations. Detailed comparisons are made with the quantum results by splitting the quantum and the QCT cross-sections into contributions from reaction paths that wind in different senses around the CI and that scatter the products in the nearside and farside directions. Reaction paths that traverse one transition state (1-TS) scatter their products in just the nearside direction, whereas paths that traverse two transition states (2-TS) scatter in both the nearside and farside directions. However, the nearside 2-TS products scatter into a different region of angular phase-space than the 1-TS products, which explains why the GP effects cancel out in the ICS. Analysis of the QCT results also suggests that two separate reaction mechanisms may be responsible for the 2-TS scattering at high energies.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Foudhil BouaklineORCiDGND, Stuart C. Althorpe, Pascal Larregaray, Laurent Bonnet
URL:http://www.informaworld.com/openurl?genre=journal&issn=0026-8976
DOI:https://doi.org/10.1080/00268971003610218
ISSN:0026-8976
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2010
Erscheinungsjahr:2010
Datum der Freischaltung:25.03.2017
Quelle:Molecular physics. - ISSN 0026-8976. - 108 (2010), 7-9, S. 969 - 980
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.