• search hit 7 of 2424
Back to Result List

Investigation of the unusually high rotational energy barrier about the C-N bond in 5-(2-x-phenyl)-N,N-dimethyl-2H-tetrazole-2-carboxamides

  • In this study, the synthesis of new 5 (2-x-phenyl)-N,N-dimethyl-2H-tetrazole-2-carboxamides (X = H and Cl) is reported coupled with the investigation of their dynamic H-1-NMR via rotation about C-N bonds in the moiety of urea group [a; CO-NMe2] in DMSO solvent (298-373 K). Accordingly, activation free energies of 17.32 and 17.50 kcal mol(-1) were obtained for X = H and Cl respectively, with respect to the conformational isomerization about the Me2N-C=O bond (a rotation). Moreover, a and b [b; 2-tetrazolyl-CO rotations] barrier to rotations in 5-(2-x-phenyl)-N,N-dimethyl-2H-tetrazole-2-carboxamides were also calculated by B3LYP/6-311++G** procedure. The optimized geometry parameters are well consistent with the X-ray data. Computed rotational energy barriers (X = Cl) for a and b were estimated to be 17.52 and 2.53 kcal mol(-1), respectively, the former in agreement with the dynamic NMR results. X-ray structures verify that just 2-acylated tetrazoles are formed in the case of 5-(2-x-phenyl)-N,N-dimethyl-2H-tetrazole-2-carboxamides. AIn this study, the synthesis of new 5 (2-x-phenyl)-N,N-dimethyl-2H-tetrazole-2-carboxamides (X = H and Cl) is reported coupled with the investigation of their dynamic H-1-NMR via rotation about C-N bonds in the moiety of urea group [a; CO-NMe2] in DMSO solvent (298-373 K). Accordingly, activation free energies of 17.32 and 17.50 kcal mol(-1) were obtained for X = H and Cl respectively, with respect to the conformational isomerization about the Me2N-C=O bond (a rotation). Moreover, a and b [b; 2-tetrazolyl-CO rotations] barrier to rotations in 5-(2-x-phenyl)-N,N-dimethyl-2H-tetrazole-2-carboxamides were also calculated by B3LYP/6-311++G** procedure. The optimized geometry parameters are well consistent with the X-ray data. Computed rotational energy barriers (X = Cl) for a and b were estimated to be 17.52 and 2.53 kcal mol(-1), respectively, the former in agreement with the dynamic NMR results. X-ray structures verify that just 2-acylated tetrazoles are formed in the case of 5-(2-x-phenyl)-N,N-dimethyl-2H-tetrazole-2-carboxamides. A planar trigonal orientation of the Me2N group was proven by X-ray data, which is coplanar to the carbonyl group, coupled with partial double bond C-N character. This also illustrates the syn-periplanar position of the tetrazolyl ring with C=O group. In solution, the planes containing tetrazolyl ring and the carbonyl bond are almost perpendicular to each other (because of steric effects as confirmed by calculations) while the planes containing carbonyl bond and Me2N group are coplanar. This phenomenon is in contrast with similar urea derivatives and explains the reason for the unusually high rotational energy barrier of these compounds. (C) 2020 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Abdolkarim FarrokhzadehORCiD, Ali Reza Modarresi-Alam, Farideh Badichi Akher, Erich KleinpeterGND, Alexandra Kelling, Uwe SchildeORCiDGND
DOI:https://doi.org/10.1016/j.molstruc.2020.129363
ISSN:0022-2860
ISSN:1872-8014
Title of parent work (English):Journal of molecular structure
Subtitle (English):insights from dynamic H-1-NMR and DFT calculations
Publisher:Elsevier
Place of publishing:New York, NY
Publication type:Article
Language:English
Date of first publication:2020/10/29
Publication year:2020
Release date:2024/09/11
Tag:H-1-NMR; X-ray structures; barrier to rotation about C-N bond; carbamoyl tetrazoles; dynamic; quantum mechanical calculations
Volume:1226
Issue:Part B
Article number:129363
Number of pages:9
Funding institution:chemistry department of the University of Sistan and Baluchestan
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.