The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 60 of 2891
Back to Result List

CH2 + O-2

  • The singlet and triplet potential surfaces for the title reaction were investigated using the CBS-QB3 level of theory. The wave functions for some species exhibited multireference character and required the CASPT2/6-31+G(d,p) and CASPT2/aug-cc-pVTZ levels of theory to obtain accurate relative energies. A Natural Bond Orbital Analysis showed that triplet (CH2OO)-C-3 (the simplest Criegee intermediate) and (CH2O2)-C-3 (dioxirane) have mostly polar biradical character, while singlet (CH2OO)-C-1 has some zwitterionic character and a planar structure. Canonical variational transition state theory (CVTST) and master equation simulations were used to analyze the reaction system. CVTST predicts that the rate constant for reaction of (CH2)-C-1 + O-3(2) is more than ten times as fast as the reaction of (CH2)-C-3 ((XB1)-B-3) + O-3(2) and the ratio remains almost independent of temperature from 900 K to 3000 K. The master equation simulations predict that at low pressures the (CH2O)-C-1 + O-3 product set is dominant at all temperatures and theThe singlet and triplet potential surfaces for the title reaction were investigated using the CBS-QB3 level of theory. The wave functions for some species exhibited multireference character and required the CASPT2/6-31+G(d,p) and CASPT2/aug-cc-pVTZ levels of theory to obtain accurate relative energies. A Natural Bond Orbital Analysis showed that triplet (CH2OO)-C-3 (the simplest Criegee intermediate) and (CH2O2)-C-3 (dioxirane) have mostly polar biradical character, while singlet (CH2OO)-C-1 has some zwitterionic character and a planar structure. Canonical variational transition state theory (CVTST) and master equation simulations were used to analyze the reaction system. CVTST predicts that the rate constant for reaction of (CH2)-C-1 + O-3(2) is more than ten times as fast as the reaction of (CH2)-C-3 ((XB1)-B-3) + O-3(2) and the ratio remains almost independent of temperature from 900 K to 3000 K. The master equation simulations predict that at low pressures the (CH2O)-C-1 + O-3 product set is dominant at all temperatures and the primary yield of OH radicals is negligible below 600 K, due to competition with other primary reactions in this complex system.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Elham MazareiORCiD, John R. BarkerORCiD
DOI:https://doi.org/10.1039/d1cp04372b
ISSN:1463-9076
ISSN:1463-9084
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/34913447
Title of parent work (English):Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies
Subtitle (English):reaction mechanism, biradical and zwitterionic character, and formation of CH2OO, the simplest Criegee intermediate
Publisher:Royal Society of Chemistry
Place of publishing:Cambridge
Publication type:Article
Language:English
Date of first publication:2021/12/07
Publication year:2022
Release date:2024/01/10
Volume:24
Issue:2
Number of pages:14
First page:914
Last Page:927
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.