• search hit 5 of 65
Back to Result List

Pulsed field gradient NMR study of anomalous diffusion in a lecithin-based microemulsion

  • Self-diffusion measurements in microemulsion systems composed of a naturally occurring soybean lecithin mixture, an aqueous phase, either water or a 1% aqueous PDADMAC solution, and isooctane were accomplished by pulsed field gradient (PFG) (HNMR)-H-1 spectroscopy at oil dilution lines of low and intermediate water/lecithin ratios. The concentration-dependent diffusion data reveal water-in-oil (W/O) reverse micellar aggregates with dimensions on the nanometer scale being slightly smaller at low water content. With increasing micellar volume fractions, both hydrodynamic as well as direct interactions between particles significantly slow aggregate diffusion. The surfactant mean square displacements (msd's) in dilute and concentrated polymer-free systems studied as a function of diffusion time (20-1000 ms) are characterized by a crossover from Gaussian diffusion, due to slow aggregate motion, to anomalously enhanced diffusion, due to fast surface-bulk surfactant exchange at intermediate times revealing weak, barrier-controlled adsorptionSelf-diffusion measurements in microemulsion systems composed of a naturally occurring soybean lecithin mixture, an aqueous phase, either water or a 1% aqueous PDADMAC solution, and isooctane were accomplished by pulsed field gradient (PFG) (HNMR)-H-1 spectroscopy at oil dilution lines of low and intermediate water/lecithin ratios. The concentration-dependent diffusion data reveal water-in-oil (W/O) reverse micellar aggregates with dimensions on the nanometer scale being slightly smaller at low water content. With increasing micellar volume fractions, both hydrodynamic as well as direct interactions between particles significantly slow aggregate diffusion. The surfactant mean square displacements (msd's) in dilute and concentrated polymer-free systems studied as a function of diffusion time (20-1000 ms) are characterized by a crossover from Gaussian diffusion, due to slow aggregate motion, to anomalously enhanced diffusion, due to fast surface-bulk surfactant exchange at intermediate times revealing weak, barrier-controlled adsorption behavior. Upon addition of the polycation PDADMAC, the diffusion characteristics change to exclusively superdiffusive behavior with surfactant msd scaling with time as t(3/2) over the entire time range studied. This is caused by surfactant molecules performing Levy walks along the surface of reverse micelles mediated by the dilute bulk. The bulk-mediated surface diffusion is a consequence of the diffusion-controlled micelle-bulk exchange dynamics induced by interactions of PDADMAC with surfactant headgroupsshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:G. Wolf, Erich KleinpeterORCiDGND
ISSN:0743-7463
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Langmuir. - ISSN 0743-7463. - 21 (2005), 15, S. 6742 - 6752
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.