The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 30974 of 43899
Back to Result List

A facile precursor route to transition metal molybdates using a polyzwitterionic matrix bearing simultaneously charged moieties and complexing groups

  • An unconventional but easily accessible precursor route involving the thermal treatment of hybrid precursors containing an ampholytic polymer matrix is developed to prepare multimetallic oxides of catalytic interest such as transition metal molybdates. A copolymer of diallyldimethylammonium chloride and a functionalized maleamic acid bearing an amine group suited for cation complexation was designed, synthesized and used as a matrix to stabilize inorganic species generated in solution from Ni(NO3)(2)center dot 6H(2)O, Co(NO3)(2)center dot 6H(2)O and/or Mn(NO3)(2)center dot 4H(2)O together with (NH4)(6)Mo(7)O(24)center dot 4H(2)O. UV-vis-NIR as well as C-13-NMR studies suggest that the interactions between the cations and the polymer in solution are mainly electrostatic. Only minor complexation interactions take place under certain conditions. Homogeneous hybrid blends were prepared from these solutions. The presence of a complexing amine group in addition to the charged betaine moieties in the polymer permits stabilization of moreAn unconventional but easily accessible precursor route involving the thermal treatment of hybrid precursors containing an ampholytic polymer matrix is developed to prepare multimetallic oxides of catalytic interest such as transition metal molybdates. A copolymer of diallyldimethylammonium chloride and a functionalized maleamic acid bearing an amine group suited for cation complexation was designed, synthesized and used as a matrix to stabilize inorganic species generated in solution from Ni(NO3)(2)center dot 6H(2)O, Co(NO3)(2)center dot 6H(2)O and/or Mn(NO3)(2)center dot 4H(2)O together with (NH4)(6)Mo(7)O(24)center dot 4H(2)O. UV-vis-NIR as well as C-13-NMR studies suggest that the interactions between the cations and the polymer in solution are mainly electrostatic. Only minor complexation interactions take place under certain conditions. Homogeneous hybrid blends were prepared from these solutions. The presence of a complexing amine group in addition to the charged betaine moieties in the polymer permits stabilization of more than stoichiometric amounts of the metal species in the blends. XRD measurements suggest that the homogeneity in the solid state can be kept up to about 1.5 mol of each metal that is incorporated ( anionic as well as cationic) per mol of repeat units of the copolymer. The blends were calcined under air at 600 degrees C to produce the simple as well as mixed nickel, cobalt and manganese molybdates. Characterization of the final phases by XRD and Raman spectroscopy indicates that the alpha- as well as the beta-molybdate phases can be prepared, and that the mixed structures are solid solutions of the simple NiMoO4, MnMoO4 and CoMoO4. If the precursors engaged are homogeneous, the pH of the precursor solution, the amount of metal that is incorporated in the matrix, and the nature of the polymer matrix seem to exert only a minor influence on the nature of the final phase, which demonstrates the versatility and facile applicability of the methodshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:F. Rullens, N. Deligne, André LaschewskyORCiDGND, M. Devillers
ISSN:0959-9428
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Journal of Materials Chemistry. - ISSN 0959-9428. - 15 (2005), 16, S. 1668 - 1676
PACS classification:40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 47.00.00 Fluid dynamics (for fluid dynamics of quantum fluids, see section 67; see also section 83 Rheology; for sound generation by fluid flow, see 43.28.Ra-in Acoustics Appendix) / 47.57.-s Complex fluids and colloidal systems (see also 82.70.-y Disperse systems; complex fluids in Physical chemistry and chemical physics; 83.80.Hj Suspensions, dispersions, pastes, slurries, colloids; 83.80.Iz Emulsions and foams in Rheology) / 47.57.Ng Polymers and polymer solutions
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.