• search hit 31 of 95
Back to Result List

Encapsulation of amphoteric substances in a pH-sensitive pickering emulsion

  • Oil-in-water (o/w) Pickering emulsions stabilized with silica nanoparticles were prepared. Droplets of diethyl phthalate (oil phase) act as reservoirs for 8-hydroxyquinoline (8-HQ), which is used as (a) the hydrophobizing agent for the silica particles and (b) an encapsulated corrosion inhibitor for application in active feedback coatings. The hydrophobization of silica nanoparticles with 8-HQ is determined by the amount of this agent adsorbed on the nanoparticle surface. The latter is governed by the 8-HQ concentration in the aqueous phase, which in turn depends on the degree of protonation and fir ally on the pH. We observe three ranges of 8-HQ adsorption value with respect to nanoparticle hydophobization: (I) insufficient, (2) sufficient, and (3) excessive adsorption by the formation of an 8-HQ bilayer, where only case 2 leads to the necessary nanoparticle hydrophobization. Hence emulsions stable in a narrow pH window between pH 5.5 and 4.4 follow. Here functional molecules are sufficiently charged to compensate for the charges onOil-in-water (o/w) Pickering emulsions stabilized with silica nanoparticles were prepared. Droplets of diethyl phthalate (oil phase) act as reservoirs for 8-hydroxyquinoline (8-HQ), which is used as (a) the hydrophobizing agent for the silica particles and (b) an encapsulated corrosion inhibitor for application in active feedback coatings. The hydrophobization of silica nanoparticles with 8-HQ is determined by the amount of this agent adsorbed on the nanoparticle surface. The latter is governed by the 8-HQ concentration in the aqueous phase, which in turn depends on the degree of protonation and fir ally on the pH. We observe three ranges of 8-HQ adsorption value with respect to nanoparticle hydophobization: (I) insufficient, (2) sufficient, and (3) excessive adsorption by the formation of an 8-HQ bilayer, where only case 2 leads to the necessary nanoparticle hydrophobization. Hence emulsions stable in a narrow pH window between pH 5.5 and 4.4 follow. Here functional molecules are sufficiently charged to compensate for the charges on silica nanoparticles to make them interfacially active and thus able to stabilize an emulsion but they are still to a large extent uncharged and thereby remain in the oil phase. The emulsification is reversible upon changing the pH to a value beyond the stability region.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Martin F. Haase, Dmitry GrigorievORCiDGND, Helmuth Moehwald, Brigitte TierschORCiD, Dmitry G. Shchukin
URL:http://pubs.acs.org/journal/jpccck
DOI:https://doi.org/10.1021/Jp104052s
ISSN:1932-7447
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Journal of physical chemistry : C. - ISSN 1932-7447. - 114 (2010), 41, S. 17304 - 17310
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.