The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 20 of 201
Back to Result List

The Non-Keplerian Motion of Propeller Moons in the Saturnian Ring System

  • One of the tremendous discoveries by the Cassini spacecraft has been the detection of propeller structures in Saturn's A ring. Although the generating moonlet is too small to be resolved by the cameras aboard Cassini, its produced density structure within the rings, caused by its gravity can be well observed. The largest observed propeller is called Blériot and has an azimuthal extent over several thousand kilometers. Thanks to its large size, Blériot could be identified in different images over a time span of over 10 years, allowing the reconstruction of its orbital evolution. It turns out that Blériot deviates considerably from its expected Keplerian orbit in azimuthal direction by several thousand kilometers. This excess motion can be well reconstructed by a superposition of three harmonics, and therefore resembles the typical fingerprint of a resonantly perturbed body. This PhD thesis is directed to the excess motion of Blériot. Resonant perturbations are a known for some of the outer satellites of Saturn. Thus, in the first partOne of the tremendous discoveries by the Cassini spacecraft has been the detection of propeller structures in Saturn's A ring. Although the generating moonlet is too small to be resolved by the cameras aboard Cassini, its produced density structure within the rings, caused by its gravity can be well observed. The largest observed propeller is called Blériot and has an azimuthal extent over several thousand kilometers. Thanks to its large size, Blériot could be identified in different images over a time span of over 10 years, allowing the reconstruction of its orbital evolution. It turns out that Blériot deviates considerably from its expected Keplerian orbit in azimuthal direction by several thousand kilometers. This excess motion can be well reconstructed by a superposition of three harmonics, and therefore resembles the typical fingerprint of a resonantly perturbed body. This PhD thesis is directed to the excess motion of Blériot. Resonant perturbations are a known for some of the outer satellites of Saturn. Thus, in the first part of this thesis, we seek for suiting resonance candidates nearby the propeller, which might explain the observed periods and amplitudes. In numeric simulations, we show that indeed resonances by Prometheus, Pandora and Mimas can explain the libration periods in good agreement, but not the amplitudes. The amplitude problem is solved by the introduction of a propeller-moonlet interaction model, where we assume a broken symmetry of the propeller by a small displacement of the moonlet. This results in a librating motion the moonlet around the propeller's symmetry center due to the non-vanishing accelerations. The retardation of the reaction of the propeller structure to the motion of the moonlet causes the propeller to become asymmetric. Hydrodynamic simulations to test our analytical model confirm our predictions. In the second part of this thesis, we consider a stochastic migration of the moonlet, which is an alternative hypothesis to explain the observed excess motion of Blériot. The mean-longitude is a time-integrated quantity and thus introduces a correlation between the independent kicks of a random walk, smoothing the noise and thus makes the residual look similar to the observed one for Blériot. We apply a diagonalization test to decorrelated the observed residuals for the propellers Blériot and Earhart and the ring-moon Daphnis. It turns out that the decorrelated distributions do not strictly follow the expected Gaussian distribution. The decorrelation method fails to distinguish a correlated random walk from a noisy libration and thus we provide an alternative study. Assuming the three-harmonic fit to be a valid representation of the excess motion for Blériot, independently from its origin, we test the likelihood that this excess motion can be created by a random walk. It turns out that a non-correlated and correlated random walk is unlikely to explain the observed excess motion.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Michael SeilerORCiDGND
Reviewer(s):Larry W. EspositoORCiD, Philip D. NicholsonORCiD
Supervisor(s):Frank Spahn, A. Pikosky
Publication type:Doctoral Thesis
Language:English
Year of first publication:2020
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/05/28
Release date:2020/08/11
Tag:Migration; Moonlets; Propellers; Resonances; Rings; Saturn
Number of pages:127
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.