• Treffer 2 von 2
Zurück zur Trefferliste

DNA origami-based forster resonance energy-transfer Nanoarrays and their application as ratiometric sensors

  • DNA origami nanostructures provide a platform where dye molecules can be arranged with nanoscale accuracy allowing to assemble multiple fluorophores without dye-dye aggregation. Aiming to develop a bright and sensitive ratiometric sensor system, we systematically studied the optical properties of nanoarrays of dyes built on DNA origami platforms using a DNA template that provides a high versatility of label choice at minimum cost. The dyes are arranged at distances, at which they efficiently interact by Forster resonance energy transfer (FRET). To optimize array brightness, the FRET efficiencies between the donor fluorescein (FAM) and the acceptor cyanine 3 were determined for different sizes of the array and for different arrangements of the dye molecules within the array. By utilizing nanoarrays providing optimum FRET efficiency and brightness, we subsequently designed a ratiometric pH nanosensor using coumarin 343 as a pH-inert FRET donor and FAM as a pH responsive acceptor. Our results indicate that the sensitivity of aDNA origami nanostructures provide a platform where dye molecules can be arranged with nanoscale accuracy allowing to assemble multiple fluorophores without dye-dye aggregation. Aiming to develop a bright and sensitive ratiometric sensor system, we systematically studied the optical properties of nanoarrays of dyes built on DNA origami platforms using a DNA template that provides a high versatility of label choice at minimum cost. The dyes are arranged at distances, at which they efficiently interact by Forster resonance energy transfer (FRET). To optimize array brightness, the FRET efficiencies between the donor fluorescein (FAM) and the acceptor cyanine 3 were determined for different sizes of the array and for different arrangements of the dye molecules within the array. By utilizing nanoarrays providing optimum FRET efficiency and brightness, we subsequently designed a ratiometric pH nanosensor using coumarin 343 as a pH-inert FRET donor and FAM as a pH responsive acceptor. Our results indicate that the sensitivity of a ratiometric sensor can be improved simply by arranging the dyes into a well-defined array. The dyes used here can be easily replaced by other analyte-responsive dyes, demonstrating the huge potential of DNA nanotechnology for light harvesting, signal enhancement, and sensing schemes in life sciences.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Youngeun ChoiGND, Lisa Kotthoff, Lydia OlejkoORCiDGND, Ute Resch-GengerORCiDGND, Ilko BaldORCiDGND
DOI:https://doi.org/10.1021/acsami.8b03585
ISSN:1944-8244
ISSN:1944-8252
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/29916243
Titel des übergeordneten Werks (Englisch):ACS applied materials & interfaces
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:11.07.2018
Erscheinungsjahr:2018
Datum der Freischaltung:01.11.2021
Freies Schlagwort / Tag:DNA origami; FRET; nanoarray; pH sensing; ratiometric sensing
Band:10
Ausgabe:27
Seitenanzahl:8
Erste Seite:23295
Letzte Seite:23302
Fördernde Institution:Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [BA 4026/5-2]; University of Potsdam; Federal Institute for Materials Research and Testing (BAM); DFGGerman Research Foundation (DFG) [GSC 1013]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.